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ABSTRACT 

From runs of standard benchmarks or benchmark suites, it is not pos- 
sible to characterize the machine nor to predict the running time of other 
benchmarks which have not been run. In this paper, we report on a new 
approach t o  benchmarking and machine characterization. We describe the 
creation and use of a machine analyzer, which measures the performance of 
a given machine on Fortran source language constructs. The machine 
analyzer yields a set of parameters which characterize the machine and 
spotlight its strong and weak points. We also describe a program analyzer, 
which analyzes Fortran programs and determines the frequency of execu- 
tion of each of the same set of source language operations. We then show 
that by combining a machine characterization and a program characteriza- 
tion, we are able to  predict with good accuracy the running time of a given 
benchmark on a given machine. Characterizations are provided for the 
Cray X-MP/48, Cyber 205, IBM 3090/200, Amdahl 5840, Convex C-1, 
VAX 8600, VAX 11/785, VAX 11/780, SUN 3/50 and IBM RT-PC/125, 
and for the following benchmark programs or suites: Los Alamos 
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1 
Introduction 

Machine performance is described by specifying, in the case of the CPU, the timings 
for all instructions, instruction interactions within the pipeline. storage delays and delay 
probabilities, etc. This approach for estimating performance is commonly used by com- 
puter architecture performance experts in the course of designing a new architecture or 
implementing an existing one [PEU77, MAC84, W E 8 2 ,  EME84. CLA851. This type of 
characterization makes it very difficult t o  compare machines with different instructions 
sets. The standard method of evaluating computers consists of selecting some “typical” 
existing programs and running them on the new machine(s), i.e. benchmarking. There are 
a number of known problems with this approach [DON87b, WOR84]: 

(a) 

(b) 

(c) 

(d) 

(e) 

Unless the existing programs are modified, they may not take advantage of the 
new architect we. 

I t  is not reasonable to  expect that  a single figure of merit can meaningfully 
characterize a computer system. 

Each benchmark is itself a mixture of characteristics, and doesn’t relate t o  a 
specific aspect of machine performance. 

I t  is very difficult to infer the performance of the N+l’st benchmark as a func- 
tion of benchmarks 1, ..., N. 
I t  is very difficult to predict the behavior of existing benchmarks on a new 
machine, even given the characteristics of the new machine, without running 
the benchmarks. 

In this work we propose a new method to characterize the performance of computer 
systems at the level at which applications are written. This description can be used to 
predict the behavior of real workloads. The characterization is via experimental measure- 
ment of individual components of performance. We argue that by evaluating machines 
according to  a number of (somewhat) independent paramet,ers, it is possible t o  estimate 
performance for a wide range of workloads. This will permit much more valid comparisons 
between machines, and expose machine weaknesses or strong points for use by both the 
customer (in purchase, and in job assignment among various machines), and by the 
manufacturer who can then work to  improve the next version of the product. 

This report is organized as follows. In section 2 we discuss the limitations of existing 
benchmarks and identify the characteristics that  must be taken into account in the design 
of programs that can be used in the future as industry standards for system characteriza- 
tion. Section 3 describes our model for system characterization and performance predic- 
tion. In sections 4-6 we present the main modules of our system: the system characterizer, 
the program analyzer, and the performance predictor, and describe their principal com- 
ponents. In Section 7 we make an analysis of our results, discuss future improvements, 
and give a summary of this report. 
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2 
Limitations of Benchmarking 

In the past few years there has been great interest in performance evaluation caused 
mainly by an increase in the number of different new architectures. The number of bench- 
marks currently used to evaluate these systems is growing day by day, and new studies of 
the performance of these machines appear either in technical journals or in popular maga- 
zines. Every new benchmark is created with the expectation that it will become the stan- 
dard of the industry and that  manufacturers and customers will use it as the definitive 
test to evaluate the performance of computer systems with a similar computer architec- 
ture. Sooner or later every major user of computer resources publishes its own benchmark 
tha t  characterized the workload of that  scientific institution [BAI85a, BUC85, CLJR76, 
MCM861. Most of the time these benchmarks provide useful information only t o  the par- 
ticular set of users that are represented by the programs. The limitations of benchmarks 
mentioned in the introduction are well known, but those objections do not show the fun- 
damental problems Kith benchmarking. T o  understand why the results obtained with 
these programs are inadequate for system characterization, we must discuss in more detail 
how to characterize a computer system, and its relation to performance evaluation. 

2.1. System Characterization versus Performance  Evaluation 

Benchmarks, whether they are real programs, synthetic benchmarks, or kernels, have 
the problem that they confuse two different things: system characterization and perfor- 
mance evaluation. We define system characterization as an n-value vector where each of 
the components represent the performance of a particular primitive operation. This vec- 
tor fully describes the whole system a t  some level of abstraction. From the designer’s 
point of view the primitive operations could be the fetching of an instruction stream into 
the instruction buffer, a translation buffer miss, branching to  a microinstruction, and so 
on. Users see the system a t  the level a t  which they write their applications, and for them, 
the primitive functions are the set of operations supported by the language they use. Here 
the execution time of each primitive function depends not only on the hardware but also 
on the code produced by the compiler, and sometimes on the libraries and the operating 
system. 

The performance evaluation of a computer system is the measurement of some 
number of properties of the system during the execution of a particular workload. The 
properties measured may be the total execution time to complete some job steps, the 
memory used during each of the different steps, etc. The important thing to  note here is 
tha t  the evaluation depends on the set of programs executed. This means tha t  the esti- 
mate is valid only for that  particular suite. All of the existing benchmarks evaluate the 
performance of the system when this system is running that  specific benchmark, and the 
results thus obtained cannot be extrapolated to  other benchmarks or real workloads. This 
does not mean that benchmarks are not useful; they provide a good first approximation of 
the expected performance of the systems they measure. 

Standard benchmarking can be described as an experimental evaluation of alterna- 
tives. Each experiment represents a point in the performance space of the system. Only 

2 



Limitations of Benchmarking 3 

by decomposing these measurements and relating them to the characteristics of the bench- 
marks can we use them to predict the performance of different workloads. We must start 
writing benchmarks that  measure basic individual components that  affect the performance 
of computer systems, and then use these results to evaluate their behavior. This implies 
that  system characterization and performance evaluation must be seen as two independent 
activities. In this model, benchmarking is part of the characterization process. We will 
refer to this new kind of benchmarks as system characterizers t o  distinguish them from 
normal benchmarks. The results obtained with a system characterizer represent different 
aspects of the architecture and the software. It is clear that  these parameters cannot be 
combined to produce a single figure of merit. With only one number it is not possible to 
isolate the effects of hardware and software components during the execution of a variety 
of applications. 

2.2. The R o l e  of Experimentation in System Characterization 

Experimentation plays an important role in science and especially in fields like Phy- 
sics, Biology and Chemistry. Practitioners of these fields use experiments to collect infor- 
mation about a phenomenon, and then analyze the data to sustain or refute a hypothesis 
about the phenomenon. Experimentation plays the role of predictor-corrector tool in the 
development of models and theories. Unfortunately the concept of experimentation in 
computer science is not a well defined activity, [DEN80, DEN81, MCC79, FEL791 espe- 
cially in benchmarking where experimentation is confused with running programs and 
timing their execution times. A hypothesis or model t o  validate is almost never present. 

An experimental performance evaluation of a computer system must satisfy several 
conditions to  be considered experimentally sound. First, the results must be reproducible. 
This means that  independent researchers must be able to  produce the same results using 
different experiments. The results must also be consistent; the repetition of an experi- 
ment must produce the same results. The experiments must be performed in a controlled 
environment and the effect of extraneous variables must be quantified. And lastly, a 
model of t<he execution of the system must exist so the results of an experiment can be 
related to previous and future experiments. 

The last condition is especially a weak point in benchmarking. \Ve see experimenta- 
tion as the only way in which disputes can be settled regarding the comparative perfor- 
mance of different systems and the effect of particular components on the performance of 
the system, as the only way of verifying system improvements, and as the only way of 
establishing a cumulative tradition in which improvements can be introduced and new 
architectures can be evaluated. 



3 
A Model for Performance Evaluation 

Before we present our model for performance evaluation, we will first summarize our 
discussion of the last sections. \Ve know that every performance evaluation is relative to  
the workload used to  make the measurements, and also depends on the characteristics of 
the computer. I t  is not possible to evaluate a system without knowing the structure of 
the workload and the behavior of the different components of the system when the com- 
puter executes t.hat workload. In an ideal world, we will expect t ha t  for any two machines 
there exists an order on their performance. If machine A executes program X faster than 
machine B ,  then if we replace X by any other program we obtain the same relationship. 
Unfortunately, this is almost never the case. and in some cases the difference can be signi- 
ficant. For this reason some of the goals of performance evaluation (prediction) should be 
to  help us answer some of the following questions: 

- For which set of programs will machine A execute faster than machine B 
(without having to run the programs on both machines)? 

What are the portions of the programs that  will consume more resources in dif- 
ferent machines? 

What are the components that have the potential of being the bottlenecks in 
the execution of some programs? 

- 

- 

Looking at these three questions we can identify different. subproblems that  we must 
solve in order t o  answer them satisfactorily. The first involves the measurement of the 
performance of the individual components. This is what we called in the last section sys- 
tem characterization. Second, we need to  decompose the workload using the same set of 
parameters. We should be able to make an analysis of the workload in terms of the 
parameters used to  characterize the systems. Lastly, in order t o  solve the first question, 
we need t,o combine the characterization of the system with the analysis of the workload. 
This last phase we will call it execution prediction, and is part of the performance predic- 
tion of the system. In figure 3.1 we show the different stages of this process. 

3.1. A C o m m o n  Representation for Programs and Computer  Systems 

If we want t,o make predictions at  the level of user programs and at the same time to 
quantify the behavior of the different components of the systems, we need to  represent the 
systems and the programs using the same model. This model could be the machine code 
produced by the compiler, but this approach has several problems. First we need to know 
for every machine (in fact for every compiler) the code produced for each of the language 
constructs. Second the representation thus obtained is only valid for the machines that 
have the same instruction set. I t  becomes necessary for the program analyzer t o  know the 
inner workings of each possible compiler, or t o  compile each program in each machine and 
then to analyze the object code. IVhat we want is a flexible common representation for all 
the systems that is independent of the architecture and the compiler. 

4 
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Figure 8.1: System characterization and performance analysis. On the upper left part we see the 
system characterization represented as a program (benchmark) executed in a computer and 
producing the characterization of the system. On the upper right side we have the program 
analyzer, which takes as input an application program and decomposes it (statically and 
dynamically) using the same set of parameters used in the system characterizer. The lower 
part  represents the synthesis of both the characterization and the analysis producing the 
performance evaluation of the machine relative to the workload. 

The  execution time of a program depends on the code produced by the compiler, and 
this code is a function of the operations and control statements that  a particular language 
provides. For this reason the set of parameters t o  use as a base in our decomposition of 
program and systems must be an abstraction of the operations supported by most of the 
machines. and these parameters must be identified with a particular operation or control 
statement of the high-level language. 
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I t  should be clear that the number of parameters depends not only on the number of 
operations and control statements that  a programming language has, but also on the accu- 
racy of the estimates that we want to obtain. 

3.2. T h e  Class of Systems Studied 

A general model that produces estimates of the possible performance for all the dif- 
ferent architectures and modes of computations is unlikely to  exist in the near future. 
Nevertheless this does not mean that it is not possible to  obtain a model of the perfor- 
mance for a significant number of the architectures, those which have a common mode of 
operation. >loreover once w e  have a good model for this class of system, it is possible to  
extend it t o  include more complex architectures. The approach that we use in this 
research is to choose a model of computation and obtain a model of the performance for 
the machines that share that mode of operation; we will later extend i t  to include more 
complex systems. 

In this study we will restrict ourselves to a particular model of computation, in 
which we have in each system a single processor running in scalar mode, and the code gen- 
erated by the compiler is not optimized. We will assume that the uniprocessor system 
does not support vector operations or, more precisely, that  the compiler does not produce 
vector operations. We will also assume that  the programs are compiled with the optimiza- 
tion switch turned off. 

The machines described previously correspond to the SISD (single instruction 
stream/single data stream) model in the classification made by Flynn [FLYi2]. Although 
there is only one processor executing a single stream of data, this does not imply tha t  the 
processor does not have parallelism a t  the level of the execution of machine instructions. 
The execution of an instruction can occur at the same time that the next instruction is 
decoded and the last instruction is executed. 

The characterization of systems with rector operations and/or including optimization 
has several problems not present in scalar processing without optimization. Although it is 
not difficult to extend the characterizer to include vector operations, using this informa- 
tion to  predict the execution time of programs requires also the characterization of the 
compiler. Only by knowing which DO loops the compiler is capable of vectorizing can we 
make an acceptable prediction of the expected execution time. Even if it were possible to  
run experiments and detect when a particular compiler will generate vector code and 
which vector operations will be executed, we still have the problem of detecting in arbi- 
t rary programs the occurrence of possible vectorizations. This requires a program 
analyzer as ‘smart’ as any vectorizing compiler; in fact ‘smarter’, because it has t o  vector- 
ize the same loops for any arbitrary compiler and program. 

Optimization is even more difficult to handle. In addition t o  the problems men- 
tioned in the last paragraph, w e  also find that  there is not always a clear boundary on 
when to apply one optimization instead of another. In fact, applying one set of optimiza- 
tions may prevent the compiler from detecting others. The decision of which optimization 
to t ry  first normally depends on the order in which the optimizations are tried. In some 
cases optimization eliminates redundant or/and ‘dead’ code, especially inside DO loops 
and this not only affects user programs but also benchmarks, so validating the measure- 
ments is even more difficult. Lubeck et  al. reported that vector optimization had to  be 
disabled in order to obtain meaningful measurements on the Fujitsu VP-200 [LUB85]. If 
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we add that most ‘optimizing’ compilers can only perform certain optimizations on some 
data types and not in others [LIN86a, LIN86b1, we understand why it requires a ‘super- 
optimizer’ to know how a program will be modified in order to make accurate prediction 
of the expected execution time of optimized programs. I t  is outside the scope of this 
research to write such ‘super-optimizer’: we will try to  develop other techniques to charac- 
terize vectorization and optimization in the future. 

3.3. A Linear Mode l  for Program Execution 

If we want to produce estimates of the time a program or set of programs will take 
to execute in some machines, w e  will need to produce a model of how the total execution 
time is obtained from the individual parameters. One approach used by machine 
designers is to obtain the mean execution rate of a system while executing a particular 
workload. To do this we decompose the mean instruction execution time I into the sum 
of three basic components (MAC841 

I = E + D + S  (3.1) 

where D is the mean pipeline delay per instruction, caused by path conflicts, register 
dependencies, and taken branch delays; S is the mean storage access delay per instruction 
caused by a cache miss for instructions and operands; and E is the mean nominal execu- 
tion time when there are no pipeline delay or storage access delays. In our model we do 
not deal with single machine instructions, but with the set of primitive operations sup- 
ported by a particular programming language. Each of these primitive operations (param- 
eters) is mapped into several machine instructions. Therefore the mean parameter execu- 
tion time ( P i )  is equal t o  the mean execution time of that  sequence of machine instruc- 
tions. IVe can decompose the mean execution time of each parameter as 

Pi = Ei+Di+Si  ( 3 4  

where the three terms to  the right of the equal sign have the same interpretation, but 
refer to  a sequence of instructions instead of only one. 

.As we noted in the last paragraph the major difference between the two models is 
that  hardware designers are interested in the mean execution time of each machine 
instruction, while in our model the set of parameters belong to  a higher level of abstrac- 
tion. The machine implementation (code produced by the compiler) of these parameters 
could be in its simplest case one machine instruction, but in most cases the compiler gen- 
erates several machine instructions for each parameter. 

The total execution time of a 
(when no pipeline delays or storage 
the total storage access delay time. 

program is equal t o  the nominal total execution time 
delays occurs), plus the total pipeline delay time, and 

where 

i = l  i - 1  

where Ci is the number of times parameter Pi is executed. We can use these equations to 
obtain the total execution time of the program as 

n n 

i = l  i - 1  
T = C‘i(E( + Di + S i )  = 2 CiPi (3.5) 
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Sote that by using a system characterizer written in a high-level program it is nei- 
ther possible to  measure the mean nominal execution time of each parameter, nor the 
mean pipeline delay, nor the mean storage delay. What the system characterizer measures 
is the mean execution time (nominal execution plus pipeline delays and storage delays) of 
the set of machine instructions that implement each parameter. 

3.4. Limitation of the Linear Model 
The linear model for the execution time of applications proposed in the last section 

has some limitations. \Ye assumed that the time it takes for the execution of n operations 
is just the sum of the individual execution times. In highly pipelined machines the execu- 
tion time when there is a register dependency conflict. may be several times greater than 
the execution time without this delay. As an example consider the CYBER 205 architec- 
ture. The scalar processor is derived from the CDC 7600. I t  has five arithmetic subunits 
within the Scalar Floating-point unit. All of them are pipelined and can accept a new pair 
of input operands at every clock cycle (20 ns). The Add/Subtract and Multiply Units each 
takes five clock periods to  produce a result and return it t o  the input of another unit 
[IBB82]. Therefore it takes 100 ns from the beginning of the operation to the time the 
result is available. The execution time of R operations without any data  dependency con- 
flicts can take as little as Z O n  ns. On the other hand the execution of the same R opera- 
tions can take loon ns if each operation has a conflict with the next one. Consider the 
following t w o  statements 

X9 = ((X1 + X2) * (X3 + X4)) + ((X5 + X6) * (X7 + X8)) 

if we compute their timing diagrams w e  find that for the first statement the execution of 
the RHS' takes approximately 360 ns (the four adds, that  are leaves of the syntax tree, 
start execution in the first four cycles, the two multiplications in cycles 7 and 9, and the 
last add in cycle 14). For the second statement, the execution of the RHS takes 400 ns 
due to data dependencies. However the first statement executes seven operations. while 
the second only four. A simple linear model will not predict that  the first statement will 
execute faster unless the model contains information about the behavior of the processor 
when data dependencies are present. Nevertheless we expect t ha t  in large programs 
discrepancies in different directions will cancel and therefore the total error will be small 
compared to  the total execution time. 

Right Hand Side of the assignment statement. 



4 
The System Characterizer 

System characterizers ( t o  distinguish them from benchmarks) are a set of experi- 
ments that  detect, isolate and measure hardware and software features. These features 
describe the system and determine its performance. The accuracy of the description 
depends on the number and detail of the experiments. A very coarse model would be one 
in which all floating point operations are represented by only one parameter. A better 
approximation will have as many parameters as there are floating point operations. An 
even better one will distinguish the length of the operand (number of bits) and their 
storage class. In some systems the time to  access a variable depends on whether the vari- 
able is local or global. 

Each parameter must be measured in a controlled way and, if repetition is used, the 
test must be run for a significant amount of time to reduce the experimental error due to 
clock resolution. If  we view system characterization as an incremental process, we can 
build different system characterizers with different degrees of resolution. There are at 
least two possible benefits for doing this: (1) in the early phases of the evaluation process, 
it is appropriate and cost effective to use an approximation with not too many parame- 
ters. (2)  If our system model does not detect some features for certain kinds of architec- 
tures, new experiments are incorporated or some of the existing ones are replaced with a 
minimum number of changes. 

In figure 4.1 we present the process of characterization. On the left of the figure we 
have a single system characterizer run in several machines executing in uniprocessor scalar 
mode and without optimizing the code generated by the compiler. The output produced 
by the characterizer is the data base that we will use to produce performance estimates of 
the machines, with the help of the program analyzer and the execution predictor. Only 
one characterization per computer system is needed in order to estimates the performance 
of any program wri t ten in FORTRAN. 

As an example, let us consider bow characterization will work in the case of vector 
operations. Here we are interested in running some experiments to test the amount of vec- 
torization that systems can do. Not only the vector operations that the hardware sup- 
ports, but also the kind of language constructs that  the compiler can detect as vectoriz- 
able. A possible way of characterizing this class of operations is by using two or more 
parameters. In the case of memory-to-memory vector machines only two parameters are 
needed, the startup time for the vector operation, and the asymptotic execution rate. 
This last parameter is the maximum rate at which the processor can execute a vector 
operation [HOCSl, HWA84, HOC85, SHI871. For register-to-register machines we need 
also the overhead time associated with the stripminingl process, and the length of the vec- 
tor registers [BUC87, MARK']. Machines with cache, the performance is also affected by 

1 When the number of elements in a vector operation is greater than the number of vector regis- 
ters, the instruction must be treated as a sequence of vector operations. This technique is called strip- 
mining, and is done a t  compile time. Because it takes some time to restart the next operation there is 
an overhead associated with stripmining and this overhead is normally less than the vector startup. 

9 



The System Characterizer 10 

4 Machine 

I 
i 

1 4 Ma$re I p(x Characterization 

I 
I 

Characterizer 
I I 
I 

I 

Figure 4.1: The same system characterizer is used in all systems 

the size of cache: the asymptotic execution rate normally changes for vectors with a length 
greater than the size of the cache. 

4.1. Machine  Implementation of Data T y p e s  

T o  be useful the system characterizer must be easy to use and portable. Although 
FORTRAN has been standardized, there exist several differences between FORTRAN 
compilers and machines that makes complete portability difficult to achieve. One of these 
differences is the declaration of da ta  types. Single precision real variables are imple- 
mented in CDC and CRAY machines using one word, which is equal to  64 bits, while dou- 
ble precision variables are assigned two words. The CYBER 205 supports another type 
named HALF PRECISION (32 bits). On the other hand, IBM 3090/200, VAX-11, and 
SUN 3 implement single precision with 32 bits and double precision with 64 bits. Also the 
f 77 compiler in UNIX systems implements single precision with 32 bits and double preci- 
sion with 64 bits [FEL78]. In VAX machines running ULTRIX the fort compiler accepts 
quadruple precision, which is equivalent t o  double precision in CDC type machines. One 
way to avoid this problem is to specify explicitly the number of bits in the implementation 
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of the different data  types. In some compilers it is possible to  say how many bytes to allo- 
cate to the variables by appending at the end of the type an asterisk follow by 2, 4,  8, or 
16. But on the CYBER and CRAI' the meaning of the first two options is different. 
These are changed to correspond to single precision on those machines. The problem is 
more difficult in the case of integer variables. The CDC-type machines support only 64- 
bit integers: on the CRAY, integers have 46 or 64 bits?, while in the VAX and SUN 
machines integers are implemented either by 16 or 32 bits. 

To make a fair comparison between different machines we need to  make the evalua- 
tion under similar conditions in all sptems. If all the machines are 32-bit microcomputers, 
the memory cell unit on all the systems is equal, and if the tests are run under the same 
conditions. it is not difficult to make a fair comparison. On the other hand if some 
machines are 64-bit mainframes, others 32-bit minicomputers and another subset is com- 
posed of 32-bit microcomputers, then is not clear how to  make a fair comparison between 
the machines. Do we have to test the machines with all the data  types implemented with 
32 or 61 bits? How do we make a comparison if the machines do not have a common 
representation (same precision) of some data types? If some subset of the tests do not 
need more than 32-bit real numbers to execute correctly, why do we need to run these 
programs using (34-bit variables on the microcomputers? If a test gives erroneous results 
when run on a 32-bit machine, what is the point of saying that  the machine runs at the 
same speed compared to a (34-bit mainframe? 

The above discussion gives a hint of the difficulty of making a good comparison 
between machines even in the case when these have similar characteristics. The condi- 
tions in which comparisons are made should be decided case by case, depending on the 
machines and the objective of the study. The purpose of this report is not t o  make an 
evaluation of some computer systems, but to present a new methodology for performance 
evaluation and system characterization. It is for this reason tha t  we run our system 
characterizer using the particular implementation of single and double precision on each 
machine. Table 4.1 gives for each machine the number of bits used in each of the data 
types. 

4.2. Description of the Sys tem Characterizer's Parameters  

Normally the characterization of computers at the architecture level is done using 
the instruction set of the machine. On the other hand, the decomposition and analysis of 
programs normally reflects the control structures and operators t ha t  a particular language 
supports [WEI84]. Because our representation of both computers and programs uses the 
same set of parameters, results may be combined. 

T o  understand the set of parameters chosen in our system characterizer, we need to 
analyze the set of constructs that  FORTRAN provides, and see how these features affect 
the execution time of a program. We will then create parameters for the different 
mechanisms that  affect the execution and ignore those that  are only used as aids either to 
the programmer or the compilers in the writing of correct and efficient programs. The 
constructs supported by imperative or statement-oriented languages, like FORTRAN, can 
be separated in four main categories: data type definition mechanisms, expressions, 

The default on the CRAY X-MP is 46 bits. There exists a compiler option that  extends integers 
to 64 bits. 
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Integer 
single 

46 
64 
32 
32 
32 
32 
32 
32 
32 
32 

Table 4.1: Characteristici 

\ I  

Real 
single double 

64 128 
64 128 
32 64 
32 64 
32 64 
32 64 
32 64 
32 64 
32 64 
32 64 

Machine 

CRAY X-hIP/48 
CYBER 205 
IBM 3090/200 
Amdahl 5840 
Convex C-1 
VAX 8600 
VAX-11/785 
VAX-11/780 
SUN 3/50 
IBM RT-PC/125 

Name jLocat ion 

NASA Ames 
NASA Ames 

cmsa.berkeley .edu 
arnes-prandt.nasa 
convex.riacs.edu 

vangogh.berkeley.edu 
arpa. berkeley .ed u 
arnes-pioneer.nasa 

orchid.berkeley .edu 
jeff.berkeley .edu 

of the machine 
Operating 

System 
COS 1.16 

NOS 
VM/ChlS r.4 

UTS V 

UNIX 4.3 BSD 
UNIX 4.3 BSD 

Ultris 2.0 
UNIX 4.2 r.3.2 

A M  4.3 

UNIX C-1 ~6 

(I) 
Compiler 
version 

C F T  1.14 
FTN2OO 

FORTRAN v2 
F77 

F C  v2.2 
F77 v l .1  
F77 v l . 1  
F77 v l  
F77 v l  
F77 v l  

Table 4.1: Characteristics of the machines (11) 
Machine 

CRAY X-MP/48 
CYBER 205 
IBM 3090/200 
Amdahl 5840 
Convex C-1 
VAX 8600 

VAX-11/780 
SUN 3/50 

VAX- 11 /785 

IBM RT-FCl l25  

Memory 

8 Mwords 
8 Mwords 
32 Mbytes 
32 Mbytes 

100 hlbytes 
28 hlbytes 
10 Mbytes 
2 Mbytes 
4 Mbytes 
4 hlbytes 

12 

Table 4.1: Characteristics of the machines. The size of the data type implementations are in 
number of bits. 

statement-level and unit-level control structures, and simple statements. 

4.2.1. Data T y p e  Declarations 

The da ta  type declaration constructs in FORTRAN are used only as direct,ives for 
the compiler, and the creation of data objects for the global (COMMON) and local vari- 
ables is normally done before program execution. Therefore we do  not need to  create 
parameters for these statements. IVe will see in section 5.2 tha t  the declarations of a 
FORTRAN program will also help the program analyzer in the decomposition of pro- 
grams, in the  same way it9 these statements help the compiler to generate correct machine 
code. The exception to  this situation is the DATA statement, given tha t  the initialization 
of the variables declared in the DATA must be done at each activation of a program unit. 
Normally the DATA statement is used for the initialization of global variables, and there- 
fore its effect on the total execution time on scientific programs is small. 
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4.2.2. Expressions 

FORTRAN is a language for scientific and numeric applications. For this reason the 
richness of the language lies in the arithmetic operators that it supports. In addition to  
the arithmetic operators, FORTRAN also provides six relational and six logical operators. 
Our system characterizer does not distinguished between the relational operators; all of 
these operators are grouped in the same class (.EQ., .LE., etc). This is because it takes 
the same time to  compare two values independent of the relation. The same treatment is 
applied to  the logical operators (.OR., AND., and .NOT.). In contrast to the logical 
operators that  can only take as arguments logical values, the arithmetic and relational 
operators are polymorphic. This means that,  even when the semantic of the operation is 
different for different data types, the same name (symbol) is used. By looking a t  the 
arguments the compiler identifies the correct use of the operator and produces code 
accordingly. Because the execution time of a multiplication is different using integer argu- 
ments compared with real ones, we have to create a set of parameters that  represent the 
execution using integer operands and another using real operands. In similar a way the 
execution time depends on the precision of the operands; it normally takes less time to 
execute an operation with single precision compared with double precision operands. 
Another classification is made with the storage class of the operands. Global variables in 
FORTRAN (variables defined in COMMONS) are sometimes treated differently from local 
variables. An example of this is the way the CYBER 205 deals with variables stored in 
COhlllONs, when running without optimization. The compiler treats the COMMON as 
an array and allocates a base-descriptor pointing to  the first element of the COMMON. 
An operand is loaded by first adding the offset (from the beginning of the COMMON 
block) to  the base-descriptor and then loading the operand. This way of treating simple 
variables makes the execution slower when they are allocated as global (variables) as 
opposed to local. 

The  arithmetic operators defined in the system characterizer are: addition, multipli- 
cation, quotient, and exponentiation. The addition operator also includes subtraction. In 
the c s e  of exponentiation with a real base, we distinguish two cases: one when the 
exponent is integer and the other when the exponent is real. This is because in each case 
the implementation is different. When the exponent is integer the result is computed by 
either executing the same number of multiplications as in the exponent (when this is 
small), or by binary decomposition. When the exponent is real the result is computed 
using logarithms. If the base is an integer, we have two cases, one with the exponent 
equal to two and another with an exponent different from two. Because the number of 
exponentiations executed in most programs is small, these simplifications are enough for 
our purposes. 

In tables 4.2 and 4.3 we present a description of the arithmetic parameters measured 
by the system characterizer. One table is for local operands and the other for variables 
allocated in COMMON blocks. 

There are three different subsets of parameters in each table. The first subset is for 
single precision real variables; the second for double precision variables; and the last for 
integers. Two parameters require explanation. One is the set of parameters t ha t  measure 
the overhead of the store operation (SRSL, SRDL, SISL, SRSG, SRDG, and SISG), and 
the other, what we called memory transfer parameters (TRSL, TRDL, TISL, TRSG, 
TRDG, and TISG). In most high-level programming languages it is not possible t o  
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Operation 
store 

addition 
multiplication 

division 
exp (X **  I )  
exp (X ** Y)  

memory transfer 
store 

addition 
multiplication 

division 
exp (X ** I )  
exp (X ** Y) 

memory transfer 

Table 4.2: Arithmetic operators with local oDerands 
Data type 

real 
real 
real 
real 
real 
real 
real 
real 
real 
real 
real 
real 
real 
real 

Llnemonic 
SRSL 
ARSL 
hlRSL 
DRSL 
ERSL 
SRSL 
TRSL 
SRDL 
ARDL 

DRDL 
ERDL 
XXDL 
TRDL 

h,lRDL double 
double 

SISL 
AISL 
MISL 
DISL 
EISL 
XISL 
TISL 

local 
local 

store 
addition 

multiplication 
division 

exp (I ** 3) 
exp (I ** J )  

memorv transfer 

integer 
integer 
integer 
integer 
integer 
integer 
integer 

single ' local 
local 
local 

single 
single 
single , local 
single , local 
single local 
single local 

i 

Table 1.2: Arithmetic parameters with local operands. 

execute a single load operation without executing a t  the same time another operation. 

This is why we do not have a parameter that  measures the time it takes to  load a 
single operand. These times are included in the execution time of the operators. Another 
reason is that  some compilers, even when optimization is turned off, load the variables in 
registers only once while evaluating an expression3. Even if we measure the time it takes 
to  load an operand, we are left with the problem of deciding when the compiler will reload 
it or use the register that holds a copy of it,s value. On the other hand it is possible to 
run  experiments that  detect and measure the time it takes to  store the result of the 
expression. In some cases the value of these parameters is negligible (the store operation 
overlaps with the execution of arithmetic operators), while on others the time can be signi- 
ficant. In an assignment where there are no operators on the right hand side of the equal 
sign, the execution time of these statements cannot be explained just  by the store opera- 
tion. This type of statements are characterized by the 'memory transfer' parameters. 

In table 4.4 we give the set of parameters associated with compare and logical opera- 
tions for local and global variables. As in the arithmetic case we distinguish the operands 
depending on their storage class, the data  type and the precision. For the logical opera- 
tions there is only one data type and one precision. 

3 The compiler does not attempt to eliminate redundant subexpressions; it only keeps a record of 
which variables were previously loaded. This information is not used in subsequent statements even 
when these are in the same basic block. 
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F M n e mon ic 
SRSG 
ARSG 
MRSG 
DRSG 
ERSG 
XRSG 
TRSG 
SRDG 
ARDG 
MRDG 
DRDG 
ERDG 
SRDG 
TRDG 
SISG 
AISG 
MISG 
DISG 
EISG 
XISG 
TISG 

: 4.3: Arithmetic operators with globa 
Operation 1 Data tvDe 1 Precision 

store 
addition 

m u It i plic a t  ion 
division 

exp (X ** I )  
exp (S ** Y) 

memory transfer 

real 
real 
real 
real 
real 
real 
real 

store 
add it ion 

multiplication 
division 

exp (X ** I )  
exp (X ** Y )  

memory transfer 
store 

addition 
multiplication 

division 
exp (I ** 2) 
exp (I ** J )  

memory transfer 

~ _ _ _ _ _ _ _  

real 
real 
real 
real 
real 
real 
real 

integer 
integer 
integer 
integer 
integer 
integer 
integer 

Table 4.81 Arithmetic operations with global operands. 

single 
single 
single 
single 
single 
single 
single 
double 
double 
double 
double 
double 
double 
double 
single 
single 
single 
single 
single 
single 
single 

iperands 
Storage class 

global 
global 
global 
global 
global 
global 
global 
global 
global 
global 
global 
global 
global 
global 
global 
global 
global 
global 
global 
global 
global 

I Table 4.4: Conditional and 1 
Mnemonic 

ANDG 
CRSG 
CRDG 
CISG 

Operation 
AND and OR 

compare 
compare 
compare 

AND and OR 
compare 
compare 
compare 

Data type 
logical 

real 
real 

integer 
logical 

real 
real 

integer 

tical Darametera 
Precision 

single 
single 
double 
single 
single 
single 
double 
single 

Storage class 
local 
local 
local 
local 

global 
global 
global 
global 

Table 4.41 Conditional and logical parameters with local and global operands. 

4.2.3. Statement-Level  Contro l  Structures 

FORTRAN has eight different flow control statements that  affect the execution of a 
program and only a few of them have an effect on the execution time. Here we will 
present each of the different types of statements and discuss their impact in the execution 
time of the programs when using these constructs. We will also indicate the parameters 
associated with these statements. 
- GO TO s tatements:  there are three different types of GO TO statements. the 

unconditional GO TO statement, the assigned GO TO statement, and the computed 
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GO T O  statement. The unconditional GO T O  is the most used of the three and also 
is the fastest t o  execute. In most machine this statement is implemented by a single 
machine instruction, but in pipeline architectures the cost of a pipeline stall can be 
significant if its target is not in the CPL' prefetch buffer. LVe created one parameter 
(GOTO) to measure the mean execution time of an unconditional branch. \Ve do not 
take into account the distance from the source of the branch to  its target. 
Branches affect the execution of a program in several ways. In pipelined machines a 
penalty must be paid when a branch is taken and the target instruction has not been 
previously fetched4. All partially executed instructions in the pipeline must be dis- 
carded and the new stream of instructions must be fetched [LEE84]. .A branch to  an 
instruction tha t  is not in the cache involves not only fetching the next instruction, 
but in addition the miss ratio is affected by changing the spatial locality of the exe- 
cution [SMI82]. 

The computed GO T O  statement is the equivalent of the case and switch state- 
ments in PASCAL and C respectively. The control of the transfer is the value of an 
integer expression. The implementation of this instruction uses a table and executes 
and indirect branch with the integer expression as an offset. This usually requires 
the execution of several machine instructions, like loading the value of the control 
variable from memory, selecting the branch displacement from the branch table. and 
branching to the new instruction. The execution time of this instruction is normally 
one order of magnitude greater than the unconditional branch. In fact for some 
machines the characterizer did not detect the execution time of an unconditional 
branch. We measure the execution time of this instruction with the parameter 
GCOM. 
The assigned GO T O  statement is an old and rarely used feature in FORTRXN; its 
purpose is t o  control the transfer to the value of an integer variable that was previ- 
ously assigned the value of a label. In the system characterizer and the program 
analyzer this construct is treated in the same way as the computed GO TO. 

DO loop statement: this mechanism controls the repeated execution of a group of 
statements. The execution overhead associated with this statement may be signifi- 
cant in scientific applications running in scalar mode. Its implementation has two 
parts, the initialization of the control variable, limit and step, and the repetition con- 
trol overhead. The first overhead is insignificant and in fact in the first versions of 
the characterizer there was no parameter associated with it. In programs where 
small loops (few iterations) are nested inside other loops, the initialization overhead 
may affect the total execution time. In the system characterizer we haye four 
parameters t ha t  deal with DO statements due to implementation differences in most 
machines. In FORTRAN there is the possibility of omitting the step value of the 
header of the loop, and the compiler assigns one to  the step by default5. The code 
produced by most compilers when the step is one is different than the code when the 
step is not one. In figures 4.2 and 4.3 we see the code produced by the CYBER 205 
FTN200 FORTRAN compiler for these two cases. 

- 

4 Even in machines that have some kind of branch prediction circuitry, a penalty must be paid 

6 D. Knuth reports that  80% of the DO loops have a step value of 1 [KNu71]. 
when the prediction is incorrect. 
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D O l I = J . K  
. . .  

1 COlTIlTUE 

RTOR #l ,  C-4  ; load #l i n t o  r e g i s t e r  C-4  ( s t e p )  
RTOR K, C - 5  ; load K i n t o  r e g i s t e r  C - 5  ( l i m i t )  
RTOR J ,  I ; load J i n t o  v a r i a b l e  I ( c o n t r o l  v a r i a b l e )  
IBXLE,BRF C - 5 , ,  L 2  ; is  u p p e r  l i m i t  l e s s  t h a n  l o w e r  l i m i t ?  

L1  * . .  
. . .  ; body of l o o p  

... 
IBXLE,BRB I ,  C-4 ,  L 1 ,  C - 5 ,  I ; i n c r e m e n t  I b y  C-4,  compare 

L 2  ; w i t h  C - 5 ,  b r a n c h  t o  l a b e l  L1 
; i f  l e s s  e q u a l ,  and s t o r e  v a l u e  i n  I 

Figure 4.2: Asernbier code of DO loop with step equal one 

DO 1 I = J,  K ,  L 
... 

1 COBTIHUE 

SUBX K,  J ,  PR-3  , 
ADDX L ,  PR-3 .  PR-4  , 
D I W  P R - 4 ,  I ,  PR-5 , 
TRU P R - 5 ,  PR-6 0 

RTOR P R - 6 ,  C-4  
RTOR #O, C - 5  
RTOR L ,  C - 6  
RTOR J, I . 
IBXLE,  BRF C - 4 , ,  L2 

... 

... , 

... 
ADDX I ,  C-6, I , 
IBXLE,BRB C - 5 ,  tl, L l ,  C - 4 ,  C - 5  ; 

L2 

t h e  s t a t e m e n t  DO 1 I = J, K ,  L is 
t r a n s f o r m e d  t o  t h e  e q u i v a l e n t  s t a t  emen t 
DO 1 C - 5  = 0, C-4  - 1, 1 
where C - 4  = [(K - J + L) / L] 

load #O i n t o  r e g i s t e r  C - 5  
load v a r i a b l e  L i n t o  r e g i s t e r  C-6 
load J i n t o  v a r i a b l e  I 
is u p p e r  l i m i t  l e s s  t h a n  lower l i m i t ?  

L 1  
body of l o o p  

i n c r e m e n t  I by r e g i s t e r  C-6 
i n c r e m e n t ,  t e s t ,  and b r a n c h  i n s t  

Figure 4.8: Assembler code of DO loop with step different from one 

As the two figures show, the initialization and iteration overhead are different, and 
in the second case can significantly affect the execution of the program when we have 
various DO loops nested. In the system characterizer there exist two parameters for 
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each type of DO loop. For loops with step equal one the initialization and repetition 
overhead are called LOIN, and LOOV. In the other case the parameters are LOIS 
and LOOX. llaking a good measurement of the overheads incurred by the DO loop 
statement can be difficult. 
IF statements: there are three different type of IF statements in FORTRAN, the 
block IF. the logical IF, and the arithmetic IF. The block IF statement is a new 
feature incorporated in the FORTRAN 7'7 standard and represents the if-then-else 
mechanisms of .\LGOL-like languages. In fact the logical IF is a special case of the 
block IF, when no else clauses are used a d  the then part of the if contains only 
one executable statement. If we analyze the effect of a block IF statement in the 
execution time, we will notice that  the only overhead incurred by this statement is 
the same as the one produced by a conditional branch instruction. We can see this 
by looking at the next two examples 

- 

L = I .EQ. J .OR I .NE. K 

where I ,  J ,  and E; are integers and L is a logical variable, and 

IF (I EQ J OR I NE K) GO TO 1 

The machine code produce by the compiler for the right hand side of the assignment 
and for the expression inside the parenthesis in the IF statement is the same, even 
for compilers that  short-circuit expressions. The same situation occurs in the case of 
the else and elseif statements. The arithmetic IF is handled in a similar way. This 
statement has two parts; one is the evaluation of an arithmetic expression, and the 
other is a jump to one of three possible targets. The arithmetic expression is 
analyzed as any other expression and the branch is replaced by a computed G O T 0  
statement. 

- CONTINUE statement: this construct is not an executable statement and its 
occurrence in the source program should affect the execution time of an application. 

CALL and RETURN statements:  the first statement transfers control from one 
unit t o  another and the second statement returns the control t o  the original caller. 
Also included in the CALL statement are the set of parameters that  are passed from 
one subprogram to another. The overhead incurred by the execution of the CALL 
statement is considerable and can be divided in three parts: the overhead incurred in 
the passing of arguments, the prologue overhead and the epilogue overhead. This 
last part is the code executed by the RETURN statement. The amount of work that  
has to  be done depends on the number and type of the arguments. In FORTRAN all 
the arguments are passed by reference including values computed by expressions. 
The characterizer has three parameters, these are: ARGS, ARGD, ARGI. These 
measure the time to load the corresponding pointer t o  single precision, double preci- 
sion and integer variables either into the static environment of the callee subprogram 
or in the execution stack. Although FORTRAN uses static allocation, many 
machines use the execution stack t o  pass parameters and results between subprogram 
units. The addition of the prologue and epilogue execution time associated with the 
invocation of a unit program is characterized by the parameter PROC, even when 
each of them is executed in different subprogram units and at different moments. 

- 
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- STOP and PAUSE statement:  these instructions do not generate 
overhead, and therefore there are no parameters for these statements in 
characterizer. 

Table 4.5:  Execution control and array access Darameters 
[nemonic 
PROC 
AGRS 

AGIS 
ARR 1 
ARR2 
ARR3 
ARR4 
ARRN 
IADD 

AGRD 

GOT0 
GCOM 
LOIN 
LOOV 
LOIX 
LOOX 

Operation 
procedure call 
argument load 
argument load 
argument load 

array wi th  1 dimension 
array with 2 dimensions 
array with 3 dimensions 
array with 4 dimensions 

array with 2 5 dimensions 
addition in array index 

simple goto 
computed goto 

do loop initialization step 1 
do loop overhead step 1 

do loop initialization step n 
do loop overhead step n 

Data type 
na 

real 
real 

integer 
na 
na 
na 
n a  
na 

integer 
na 
na 
na 
n a  
na 
na 

Precision 
na 

single 
double 
single 

na 
na 
n 3  
na 
na 

single 
na 
na 
n 3  
n a  
na 
na 

i9  

significant 
the system 

Table 4.6: Execution control and array access parameters. 

4.2.4. Addit ional  Parameters  

In addition to  the parameters presented in the last subsections, there are also other 
parameters that ,  although they cannot be associated to any particular statement or opera- 
tion, have a significant execution time and should therefore be included in our model. 
The first subset deals with the overhead associated with the access of a value stored in an 
array. If  the variable referenced by the  program is stored in an n-dimensional array and 
the value of the indices that determine the particular element are not known at compile 
time, the compiler must generate code t o  compute the actual address at execution time. 
There are three parameters that  measure this overhead: ARR1, ARR2, ARR3. Each 
measures the additional time it takes to access a variable in an array of one, two and 
three dimensions. The overhead for variables in four and five dimensions (ARR4, ARRN) 
is computed using a linear combination of the three basic parameters. We do not consider 
a more detailed characterization of array references, because, in our benchmarks, they 
were very few arrays with more than three dimensions and no examples of more than five. 

Intrinsic functions form the last subset of parameters. Although the number of times 
these instructions are executed in a program is small, their execution time is normally 
very large compared with tha t  of a single arithmetic operation. These parameters are 
shown in table 4.6 for single and double precision real arguments. The execution time of 
an intrinsic function is not always constant and normally depends on the magnitude of the 
arguments. As an example, consider how the IBM 3090/200 computes the sine function 
[IBM87]. In the computation, the execution time of several steps depends not only on how 
large is the argument, but also on how small is its difference from the nearest multiple of 
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71. Depending on the magnitude of this difference a polynomial of degree one, three, five, 
or a table and additional arithmetic is needed to compute the result. The CRAY S- l IP  
library reference manual [CRA84] contains a table with execution times for most of the 
intrinsic functions. In most cases the difference between the maximum and the minimum 
time is less than 20%'. However for programs with a large number of calls to these func- 
tions. a better characterization may be needed to obtain acceptable predictions. 

Table 4.6: Parameters for intrinsic functions 
hlnem on ic 

EXPS 
LOGS 
SINS 

TANS 
SQRS 
EXPD 
LOGD 
SIND 

TAND 
SQRD 

Operation I Data type I Precision 1 Storage class 
exponential 
logarithm 

sine 
tangent 

square root 
exponential 
logarithm 

sine 
tangent 

square root 

I real 
I 1 ;;; 

real 
real 1 real 

j real 
I real 

single 
single 
single 
single 
single 
double 
double 
double 
double 
double 

local 
local 
loc a1 
local 

local 
local 
local 
local 
local 

~ 

Table 4.6: Parameters for intrinsic functions. 

4.3. Experiment  Design 

Timing a benchmark is very different from making a detailed measurement of the 
parameters in the system characterizer. For some benchmarks the system clock is enough 
for timing purposes, and repetition of the measurements normally produces an insignifi- 
cant variance in the results. On the other hand, the measurement of the parameters of a 
system characterizer using a high level program is not easy due to a number of factors: 

- 
- 
- 

The short execution time of most operations (20 nsec - 10 psec) 

The resolution of the measuring tools (2 1 ps) 

The difficulty of isolating the parameters using a program written in FOR- 
TRAN 

The intrusiveness of the measuring tools 

Variations in the hit ratio of the memory cache 

External events like interrupts, multiprogramming, and 1/0 activity 

The need to  obtain repeatable results and accuracy 

- 
- 
- 
- 

The parameters in the system characterizer are composed of single or a small 
number of machine instructions; for this reason, the events we want to characterize have a 
duration of ten to  thousands of nanoseconds. T o  achieve a meaningful measurement of 
these events using a high-level program and with the resolution of most system clocks 

8 The maximum difference reported is 100% for the arc cosine. 
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requires clever tests, especially when the characterizer is used in different machines, each 
with different machine instruction sets and architectures. 

To isolate an operation for measurement normally requires robust tests t o  avoid 
optimizations7 from the compiler that would eliminate the operation from the test and 
distort the results [CLA86]. Different, techniques must be used, in particular avoiding the 
use of constants inside the test loops: using IF and GO TO instructions instead of the DO 
LOOP statement to control the execution of the test; initializing variables in external pro- 
cedures to avoid constant folding. Separate compilation of variable initialization pro- 
cedures, to make sure that the body of the test does not give enough information to  the 
compiler to eliminate the operation being measured from inside the control test loop. 

4.4. Test Structure  and Measurement 

The events that  we want to measure and characterize have very small execution 
times. For this reason it is not possible to make a direct measurement of a single execu- 
tion in most systems. The clock resolution in many machines is bigger than the execution 
time of a single operation. In machines with the UNIX operating system, the clock resolu- 
tion is almost always 1/60’th of a second. This value is several orders of magnitude 
greater than the time it takes to execute almost any operation. In addition the overhead 
incurred by executing the clock routine affects our measurements. One way of reducing 
these factors is t o  repeat the test some number of times to obtain a measurement tha t  is 
much greater than the errors produced by the clock resolution and the overhead of the 
timing routine combined. There are problems associated with this technique. In a machine 
with cache memory the value obtained for the execution time of a single operation using 
repetition is smaller than the execution time of a single operation when the arguments are 
not previously in the cache. The results obtained in this way will indicate that the system 
is faster than in the case when the arguments are not in the cache. Nevertheless there are 
at least t w o  arguments that support using repetition. The first one is that  the very idea of 
using cache memories in computer systems is because programs tend to satisfy the princi- 
ple of locality. The second reason is that  we expect that  the error incurred by using 
repetition will be small compared with the experimental error, especially if we take into 
account that  the cache hit ratio of typical applications is high. 

Figure 4.4 shows the structure of the tests in our system characterizer. We can iden- 
tify five parts in each experiment. The initialization, in which the number of iterations 
of the body of the test is computed. For each test we have to make sure that it will exe- 
cute for a minimum amount of time in fast machines, but not for too long in slow sys- 
tems. T o  control this we have three parameters, the SPEEDUP factor (> 0), that  gives a 
crude approximation of the relative performance of the system compared to  the CRAY 
X-MP/48, the number of iterations (LIMITO) it takes the CRAY X-MP/48 to  execute the 
test for one second, and the duration of the test (TMAX). This last parameter will permit 
us to control the execution as a function of the resolution of the clock and the variance of 
the measurements. The t e s t  is the code included in the two lines with ellipsis, and is the 
instruction or group of instructions tha t  we want t o  characterize. The additional code 

Even when we compile without optimization, compilers try to apply some standard optimizing 
techniques, like constant folding, short-circuiting of logical expressions, and computing the address of 
an element in an  array. 
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LIMIT = L I M I T 0  * SPEEDUP * TMAX 
DO 4 K = 1 ,  REPEAT 

1 COUBTER = 1 
TIME0 = SECOlYD 0 

2 I F  (COUBTER . G T .  LIMIT) G O  TO 3 
... 
body of the test 

COUNTER = COUBTER + 1 
GO TO 2 

. . .  

3 TIME1 = SECOlYD 0 
I F  (TIME1 - TIMEO . G T .  TMAX) GO TO 4 
L I Y I T  = T U X  * LIMIT / (TIME1 - TIMEO) 
GO TO 1 

4 SAMPLE(K) = TIME1 - TIMEO 
CALL STAT (REPEAT, SAMPLE, AVE, VAN 

Figure 4.4: The basic struct.ure of an experiment. 

delimited by the two invocations to the SECOND function (timing function) is what we 
called an observation. Here we control the number of times the body of the test  is exe- 
cuted, so we can obtain a meaningful observation. The additional code delimited by the 
DO loop represents the ezperiment. This consists of a set of observations (controlled by 
the variable REPEAT). The last part  is the computation of the measurement. In this 
par t  we compute the mean value of our observations and the variance. To  control the 
error in our measurements we  have t w o  possibilities; one is to run each test for a signifi- 
cant amount of time; the other is to  increase the number of observations inside the experi- 
ment. In the first case we increase the number of iterations that the body of the test is 
executed (increasing the value of LIhlITO and LIMIT in figure 4.4).  In the second case we 
execute the body of the test the same number of times, but increase the size of the sample 
statistic (increasing the value of variable REPEAT). In section 4.5.1 we discuss the effect 
of each one of these possibilities. 

4.4.1. Direct Tests, Composite Tests and Indirect Tests 
To understand the possible sources of experimental error, and how t o  compute them, 

we need the concepts of a ‘direct test’, ‘composite test’ and ‘indirect test’. As we explained 
in the last paragraph, inside of the ‘if-loop’ construct we have the test. Now in a direct 
test the body of the test consists of N occurrences of the operation we want t o  character- 
ize and nothing more. In a composite test in addition to the N operations there are 
several other operations of different type inside the body. This is necessary because in 
most of the cases it is not possible to  make a direct measurement of the parameters, and 
we have to  include some additional operations. In an indirect test the execution time for 
the operation we are measuring ( P i )  is obtained by running two different tests. Some 
parameters of the system characterizer are coupled; it is not possible to execute one 
without executing the other, and therefore the way to  isolate one of the parameters is to  
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run two tests with different number of operations for each of the parameters. The body 
of the second test is the same as the body of the first test, plus some additional work. The 
difference in the execution time between the two tests gives us the value of one of the cou- 
pled parameters. An example of this is the DO loop initialization and overhead. Every 
time we have a DO loop in a FORTRAN program, the compiler generates code that 
includes the initialization of the loop and also the overhead to control the iteration. By 
changing the number of times the loop is executed, in two tests, we can obtain a pair of 
linear equations to compute the values of the initialization and the overhead. In the next 
subsection we will see that  the variance of our measurements depends on whether the 
obserntions are done using direct, composite, or indirect tests. 

4.5. Experimental Errors and  Confidence Intervals 

As we pointed out in the last section, one of the important parts of the characterizer 
is to control the accuracy and exactitude of our measurements. In order to make an 
evaluation of the quality of our measurements, we need to quantify the sources of error in 
our experiments. Currah gives a long list of the causes in the variability in CPU time as 
measured by the system clock [CURiS, MER831. Some of these factors are: (a) Timer 
resolution of CPU clock. (b) Improper allocation of CPU time for 1 / 0  interrupt handling. 
(c) Changes in cache hits due to  interference with concurrent tasks. (d) Cycle stealing 
while another component is sharing a resource with the CPU. (e) Number of context 
switches: the time spend by the dispatcher and timer routine before dequeuing or after 
enqueing a process. Some of these events have a length of time far greater than the 
phenomena that we are measuring. 

We also have t o  subtract the execution time of the code tha t  controls our test and 
the overhead incurred by the timer routine. These measurements have their own variance 
and the subtraction of these overheads increases the variance of our measurements. All 
the factors combined can be significant compared to the magnitude of our results. IVe 
will now proceed to  quantify the sources of variability and obtain expressions for the vari- 
ance for the different types of experiments. 

We denote the factors affecting our measurements as follows: 

Table 4.7: Definitions of terms used in the time analysis 
Tio ::= CPU time before the observation (TIMEO) 

CPU time after the observation (TIME1) Til 
Cowrhead ..- overhead involved in the timing function 
IFowrhead .._ ..- overhead involved in the if-loop control 

Nlimit 

Nrept 
q j  
0 .. - sample mean of each observation (measurement) 
B .. - sample mean execution time of the test 
Pi .. - sample mean of parameter i 

::= 
..- 

.._ ..- 

.._ ..- 
number of times the body is executed (LIMIT) 
number of observations in the experiment (REPEAT) ..- ..- observation j 

.._ 

.._ 

.._ 
U 2  ::= variance operator 

We know that each observation Oi is equal to  

Oj = Tj, - Ti, (4.1 1 
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then rhe mean value (6) of these observations is 

and i t5  variance 

(4 .2)  

(4 .3)  

Sow the mean value of each experiment is equal to the time it takes to execute the 
body of the test Nlimit times, plus the overhead of the timing function 

6 = Nlimit (B + ~ ~ o u r r w )  + cotlethead (4.4) 

where B is the mean time it takes to  execute once the body of the test. iVe can compute 
this d u e  and the variance with the equations 

and 

To obtain the mean value of parameter pi we need to  know if the test is direct, com- 
posite or indirect. Let N be the number of times parameter pi is executed inside the body 
of the test, then the mean value and variance of parameter pi in a direct test are 

f f 2 B  $pi = - 
” N 2  

- B ,  pi = - 

In a composite and indirect test we have 

(4.7) 

where \Vetm is the additional work inside the body of the test or in the second test. 

Looking a t  the above equations we can see that  there are four factors affecting the 
magnitude of the variance in a direct test and five for composite and indirect tests. These 
factors are: the resolution of the timing function; the variance of our observations; the 
variance of the execution time of the timing function; the variance of the IF control state- 
ments: and the variance of the additional work executed inside the body of the test or by 
the second test. If the  execution time of each observation is such that  we have 

then the only factors that  affect our measurements are the dispersion of our observations, 
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0.47 ps 
0.64 ps 
0.95 ps 
0.27 ps 
1.04 ps 
1.31 ps 
4.42 ps 
5.86 ps 
1.49 ps 
2.79 ps 

affected by concurrent activity on the system, and the variance in the execution time of 
the extra work present in the composite and indirect tests. 

Table 4.8 gives the experimental values for Creeolution, Coverhead, ZFover,read, and the 
minimum duration of one observation (Tmh) such that the magnitude of the right hand 
side of equation 4.9 is less than five percent the magnitude of O j  in a direct test. 

112 ps 
124 p s  
10 rns 

200 rns 
205 rns 
338 rns 
346 rns 
351 rns 
414 rns 
344 rns 

Table 4.8: Sources of ExDerimental Error 
System Cre8olution 

1.0 ps 
1.0 ps 
1.0 ps 

10.0 rns 
10.0 rns 
16.F rns 
16.F rns 
16.6 rns 
20.0 rns 

IBM RT-PC/125 ! 16.F rns 

CYBER 205 
Arndahl 5840 
IBM 3090/200 
Convex C-1 
VAX 8600 
VAX-111785 

Sun 3/50 

CRAY S-\lP/-l8 

VAX-11/780 

IzZT 
2.3 ps 
2.6 1 s  

475. ps 
376. ps 
276. ps 
175. ps 
585. ps 
825. ps 
713. ps r 507. ps 

Table 4.81 Sources of experimental error. T- gives the minimum time that a test must be run 
to reduce the error due to the resolution and cd1 overhead of the clock, and overhead of the 
test to less t.han 5 percent in a direct test. 

4.5.1. Reducing the Variance 

We have two ways of reducing the variance of our results and therefore the size of 
the confidence intervals. The first is by increasing the length of the test by augmenting 
the value of Nlimit. But the problem is that  by doing this the probability of a context 
switch increases and also the possibility of a cache flush that will be reflected in higher 
cache misses. The second possibility is to increase tlhe number of observations in each 
experiment ( N r e p t ) .  Because each of our observations is an independent and identically 
distributed random variable we can apply classic statistics and therefore the confidence 
intervals for our measurements will be reduced by the square root of the number of obser- 
vations made in each experiment. On the other hand by increasing the number of obser- 
vations, the probability that an event in the system occurs increases (e.g. swapping, the 
update of the superblock in UNIX every 30 seconds, etc) and this will increase the vari- 
ance. 

In some measurements using indirect tests, the variance obtained can be significant 
compared to  the actual measure. We can see this by considering the following case. T o  
measure the overhead and initialization of the DO loop statement we run three experi- 
ments. In the first case the test consists of a DO loop with some extra statements inside 
the loop (to prevent elimination by the compiler) that  is executed N times. In the second 
test the loop is executed 2 N  times. For the third test the loop executes N times, but the 
extra work inside the loop is twice as much as in the other tests. We can express the 
above conditions in terms of the mean execution time of the body of each test (Eli). 
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Parameter Mean ( p )  Std. Dev. (u) 
BI 69.9 p s  1.49 ps 
8 2  127.3 ps 5.74 ps 
B 3  107.4 ps 4.53 ps 

Doinitialization 12.5 P S  9.11 ps 
DO,,TM 1.99 ps 0.73 ps 

26 

u / p  (%) 
2.13 
4.51 
4.22 
72.9 
36.8 

it is easy to see that we can obtain values for DOinitialiration and DOoverhead and their vari- 
ance in terms of the Bis. 

and 

(4.12) 

In table 4.9 we give results obtained on a VtuC-11/785 for a sample statistic of size 
five and each of length of one second. We can see that  even when the sample standard 
deviation is small (< 55) for the €lis, in the case of the DO loop parameters the standard 
deviation is very large. 

Table 4.9, hlean and standard deviation. Relative magnitude of the standard deviation com- 
pared to the sample mean for l)o,nt,d,d,m and D O d .  Each test consists of 5 observations 
executed for 1 second on a VAY- 11/785. 

I t  is therefore important to know what are the values for Nlimit and h',,, that  will 
give a small standard deviation in our measurements. These values are system dependent 
and are affected by the resolution of the clock, the concurrent activity on the system, etc. 
In figure 4.5 we show the normalized confidence interval of ten parameters for values of 
NIiAt such that  the each test is run for at least 0.1, 0.2, 0.5, 1.0, 2.0 and 4.0 seconds on a 
Vax-11/780. We also obtain measurements for NE,, equal to 5, 10 and 20 observations. 
The  confidence intervals for Pi are obtained using the Student's t distribution and the 
standard error of pi as follows 

L 

and the normalized confidence intervals are 

(4.13) 

(4.14) 
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We can see tha t  for a fixed value of N,,, the confidence interval of our measure- 
ments decreases as the time of the test increases. but for small values of Nnept ,  there is a 
limit to how much we can decrease the confidence interval by increasing the time of the 
test (,Yliht). The reason for th i s  is that by increasing the length of the test we reduce the 
variability due to short term variations in the concurrent activity of the system. However 
the probability of a change in the overall concurrent activity of the system increases with 
a larger test. This change may produce a greater variance if the size of the sample statis- 
tic is small. \Ve see that the best results are obtained for 20 observations and 1 to 2 
seconds for duration of the test. In machines w i t h  good clock resolution acceptable results 
are obtained for 10 observations and .2  seconds for each test. 

In our system characterizer each test executes for a t  least 2 seconds on a CRAY S- 
MP. X potential problem with this is that a test that  runs for 2 seconds on a CRAY S- 
MP usually takes much longer on most systems. A system characterizer constructed in 
this way will have an  excessive execution time, and therefore will be unsuitable for bench- 
marking. To avoid this problem we calibrated each test t o  execute for 2.2 seconds in the 
CRAY S-;LIP/18 and adjusted each particular test according to a ‘speed-up’ factor that  
approximates the ratio of performance between the CRAY X-MP/18 and the system we 
are characterizing. Even with this approximation the execution time of each test will not 
be equal to 2.2. 11 the actual running time is greater than 2.2 seconds we keep the meas- 
urement, because this value reduces the experimental error even more. In the other case, if 
the time is less than 2 seconds, t,he system characterizer computes a new approximation 
and runs the test again. The gap between 2 and 2.2 reduces the possibility of unneces- 
sarily repeating the test. At the beginning of the execution of the system characterizer, 
the system runs four tests that  measure the clock resolution, the clock routine overhead, 
the test control overhead, and the speed-up factor. With these four quantities the system 
characterizer computes the execution times needed in each test t o  run for 2 seconds. 

4.6. Is t h e  M i n i m u m  Better t h a n  t h e  Average? 

In the previaus section we mentioned that to obtain the expected execution time per 
parameter we have to  compute the average of a number of observations. The .noise’ in 
our measurements is the result of concurrent activity in the system and the resolution of 
our measuring tools. In most systems an increase in the execution load produces an 
increase in the real and CPU time of programs. The time we measure for the execution of 
a basic operation is always greater or equal to the ‘real’ execution time when there is no 
other activity. Therefore it should be better to take the minimum instead of the average, 
given that the minimum is always less or equal than the average. By doing this we reduce 
the discrepancy between our measurement and the ‘real’ execution time. 

The main objective of this research is to characterize the actual performance of sys- 
tems, and when these systems are used in everyday situations there is always some degree 
of concurrency present. We expect that  if we filter the extra time due to  this concurrency 
our predictions will tend to be less than the actual running time of programs. However 
the only way that  we can be sure that this is the case is t o  characterize some systems 
using each of these techniques and see which of them produces better estimates. 

We ran the system characterizer twice in the Convex C-1 taking first the average 
and then the minimum, and used these results to estimate the execution time of a work- 
load composed of ten program. The difference in the value of the parameters was  
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F b r e  4.6: Confidence intervals for ten different parameters. In (a), (b),  and (c) we show how 
the length of the test and the number of observations affect the confidence interval of the 
measurements. For a fixed number of observations an increase in the execution time of the 
test tends to reduce the length of the confidence interval. Figure (d) shows all the confidence 
intervals for three of the ten parameters. All confidence intervals are normalized with 
respect to parameter Pi. 
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between 2-15%. Taking the average of the measurements produced the smallest error in 
the total execution time of the workload as we can see in table 4.10. 

Table 4.10: Estimates taking the average and the minimum 
Machine 1 Real Time /I Average I Error 11 Minimum I Error 

Convex C:l- I 543 sec 11 551 sec 1 1.47 % 11 499 sec I 8.10 % 

Table 4.101 Estimates taking the average and the minimum. The execution time of a workload 
of ten programs u’x predicted with the set, of parameters obtained using the average and 
the minimum of the measurements. 

4.7. Resu l t s  Obtained with the System Characterizer 

We executed the system characterizer in the ten machines shown in table 4.1, and in 
figures 4.6-4.9 we present the experimental values that we obtained. In the appendix (sec- 
tion 9 )  we show the results in tabular form. Table 4.11 explains the meaning of each of 
the twelve regions in which the set of parameters have been grouped. The number of 
each region is printed at  the top of the first graph in each of the three figures. Each point 
in the graphs represents the execution time for a single operation in nanoseconds. Some 
parameters have value zero. as for example, the execution time for the G O T 0  operation 
in the Convex C-1, or the addition of a constant t o  an index, if the index is a component 
of an array. This happens when the execution time of a parameter is small and its execu- 
tion overlaps with other operations; the total execution time does not depend in the 
occurrence of the parameter. 

In figures 4.10-4.11 we show the results for all the machines normalized with respect 
t o  the VA4X-11/780. There are several interesting patterns in these figures that give infor- 
mation about, the characteristics of the machines. First, we can see that the execution 
times for operations accessing local variables are similar to the times obtained for global 
variables in all the cases except for the CYBER 205. In this machine the operations using 
global variables take longer time to execute, and can take as much as ten times longer as 
in the case of the integer zdd operation and the AND operation. IVe corroborate this 
observation by looking at the same parameters compared with the ones obtained for the 
CRAY X-hlP. We can also see that to execute floating point operations with single preci- 
sion arguments, the CRAY X-MP has better times than the CYBER 205, and the IBM 
3090. But if we look at the same operations with double precision operands, we find tha t  
the times for the CRAY X-MP are greater than the ones obtained for the CYBER 205, 
IBM 3090, and Amdahl 5840. Moreover, in the case of addition, multiplication and divi- 
sion, the Convex C-1 and the VAX 8600 have smaller times than the CRAY X-MP. We 
can see from the graphs and tables that the high performance of the CRAY X-MP when 
running in scalar mode and without optimizations lies in the fast execution of the arith- 
metic floating point operations with single precision. 

It is important to point out that  double precision on the Convex, the various VAX 
machines and the Sun is 64 bits against 128 bits on the other machines. The purpose of 
this research is t o  present a new methodology of performance characterization and not t o  
compare different machines. A serious evaluation of their performance must address the 
problem of data  type representation carefully in order t o  make a fair comparison. 



Table 4.11: P a r a m e t e r  reaions in fiaures 4.84.11 

Region Set of Parameters 
1 real operations (single), local operands 

01 SRSL store 
02 ARSL addition 
03 MRSL multiplication 
04 DRSL division 
05 ERSL 
06 XRSL 
07 TRSL memory transfer 

exp ( S  ** I) 
exp (X ** j ’ )  

2 real operations (double), local operands 
08 SRDL store 
00 ARDL addition 
10 MRDL multiplication 
11 DRDL division 
12 ERDL 
13 XRDL 
14 TRDL memory transfer 

exp (X ** I )  
exp (X ** Y) 

3 integer operations, local operands 

Region 
4 

5 

6 

15 SlSL 
18 AlSL 
17 MlSL 
IS D E L  
10 E E L  
20 XISL 
21 TISL 

23 ARSG 
24 MRSG 
25 DRSG 

store 
addition 
multiplication 
division 
exp (I ** 2) 
exp ( I  ** J )  
memory transfer 

addition 
multiplication 
division 

20 SRDG 
30 ARDG 
31 MRDG 
32 DRDG 
33 ERDG 
34 XRDG 
35 TRDG 

store 
addition 
multiplication 
division 
e.xp (X ** I) 
exp (X ** Y) 
memory transfer 

I I 

logical operations with local operands 
43ANDL I A N D k O R  

intrinsic functions (single precision) 

7b 

Set of Parameters 
reai operations (single), global operands 

8 

10a 

44 CRSL compare, real, single 
45 CRDL compare. real, double 
46 ClSL compare, integer, single 

51 PROC procedure call 
52 AGRS 
53 AGRD 
54 AGIS 

function call and arguments l3 

argument load, real, single 
argument load, real, double 
argument load, integer, single 

branching paramet.ers 10b 

36 SISG 
37 AISG 
38 MlSG 
30 DlSG 
40 EISG 
41 XISG 
42 TISG 

store 
addition 
multiplication 
division 
exp (1 t i  2) 
exp (1 ** J )  
memory transfer 

logical operations with local operands 

References to array elements 

i 58 IADD array index addition 

55 ARRl array 1 dimension 
58 ARR2 array 2 dimensions 
57 ARR3 array 3 dimensions 

DO loop parameters 

intrinsic functions (double precision) 

Table 4.11: The regions in the graphs represent different aspects of the  characterization of t h e  

machines. Parameters ARR4 and ARRN are not included, because these are not measured 
directly by the system characterizer. 
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Figure 4.6: Characterization results (Cray, Cyber, and IBM 3090). The graphs show the value of 
each parameter in nanoseconds. The twelve regions represent different aspects of the char- 

acterization. 
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F W e  4.7: Characterization results (Amdahl, Convex, and Vax 8600). The graphs show the 
value of each parameter in nanoseconds. The twelve regions represent different aspects of 

the characterization. 
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Flgure 4.8: Characterization results (Vax 785, Vax 780, and Sun 3/50). The graphs show the 
value of each parameter in nanoseconds. The  twelve regions represent different aspects of 

the characterization. 
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parsnmter number 

Figure 4.0: Characterizstion results (IBM RT-PC/125). The graph show the value of each 
parameter in nanoseconds. The twelve regions represent different aspects of the characteri- 
zation. 
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Figure 4.10: Characterization results for all machines normalized to the VAX-11/780 (I). Re 
gions 1-6 represent different aspects of the characterization (see table 4.11). 
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Figure 4.11: Characterization results for all machines normalized to the VAX-11/780 (II). Re- 
gions 6-12 represent different aspects of the characterization (see table 4.11). 



5 
The Program Analyzer 

The system characterizer allows us to  represent the performance of individual opera- 
tions of different architectures using a single unified model. On the other hand, the pro- 
gram analyzer decomposes applications in terms of the same group of parameters. The 
program analyzer is a tool for measuring static and dynamic properties of programs. 
These properties determine how the application will be executed by the system me are 
evaluating. The parameters chosen for this decomposition are exactly the set of opera- 
tions supported by the programming language. I t  is for this reason that t o  implement a 
program analyzer we only need to modify the compiler t o  obtain the static properties of 
the application. Also we need to instrument the source code or the object code to  produce 
dynamic Statistics at run time. Using the static and dynamic statistics it is possible to  
obtain the dynamic behavior of the application. 

5.1. Execution Profilers 
Most of the computer systems currently in use have utilities to produce execution 

profiles using additional information generated by the compiler [POW83]. As an example, 
in UNIX 4.3BSD, the C, Pascal, and FORTRAN compilers have two options to  obtain 
reports about the program’s execution profile. The first option (-p switch), instruments 
the object code to  record information about the number of times each function is executed 
and the amount of CPU each function consumes. When the program finishes execution, it 
produces a file called mon.out that  contains the values of the counters and timers. A util- 
ity program called ‘prof’ takes this information and using the table of symbols located at 
the end of the object file, produces a detailed report about how many times each function 
was executed and the amount of time it spent in each function. A more useful tool is 
gprof [GRA82]. The profile information stored in the monitor file (gmon.out) also con- 
tains the call graph of the execution and the report generated Ly gprof gives specific infor- 
mation of who invoked each particular function and how many times. 

The SUN workstation also provides information about the number of times each line 
in the source code executes. The utility program ‘tcov’ prints the original source program 
along with the number of times each lines was executed. As in the case of ‘prof’ and 
‘gprof’ the compiler instruments the object code by including counters for each basic block 
of the source code. 

The  information that our program analyzer produces is similar t o  the one produce by 
‘tcov’. However, in addition to the number of times each basic block executes, we need t o  
count for each line, or more specifically for each statement, how many times each opera- 
tion appears in the statement. As we saw in the last section, it is not possible to  access at 
the high level of a programming language the primitive operations like load or store. I t  is 
for this reason that we need to  distinguish for each accessible operation at the high level 
the type of the operands, their storage class, and the number of bits used in their 
representation. Because this is also the kind of information that the compiler needs in 
order t o  produce correct object code, it is the compiler the best place to obtain this infor- 
mation. 

37 
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Figure 5.1 shows how static and dynamic statistics are measured by the program 
analyzer. As we can see, this process is very similar compared to  how execution analyzers 
work. In our system we are using the front end of a FORTR-AN compiler t o  instrument 
and collect static statistics for each block. and to  instrument the source code to produce 
the dynamic statistics as well. The statistics of an application produced by the program 
analyzer depend only on the application itself and not on the computer systems in which 
it runs. The significance of this is that  if we have M applications that we are going to  use 
t o  evaluate L'V computer systems, we only need one description for each program and one 
for each system ( N + M ) .  To make a performance evaluation using normal benchmarks, we 
need to  make 1V.M runs. 

Code ,) 

Execution Analyzer Program 

I 
I 

I 
-4. ,A 

Figure 6.1: Static and dynamic analysis of programs. 

5.2. S ta t i c  and Dynamic Statistics 

We can see how the program analyzer works using as an example a particular state- 
ment in one of the kernels of the Livermore Loops [MCM86]. These collection of loops 
represent the type of computational kernels found in the codes normally executed a t  
Lawrence Livermore National Laboratory. These loops contains mathematical operations, 
such as inner product and matrix multiplication, and more complicated algorithms like 
the Monte Carlo Search Loop and 2-D Particle in a Cell Loop. John Feo (FE0871 has 
investigated the computational and parallel complexity of the loops, in an attempt t o  use 
the loops to  evaluate the performance of MIMD machines. In the next few lines we can 
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param. 

39 

operat ion I type I precision I class I static I dynamic 

see a single stat,ement taken from the eighth kernel of the Livermore Loops: 

U1 (KX,KY,IiL2) = U1 (KX,KY,IiLl) + All * DU1 (KY) + 

1 A12 * DU2 (KX) + A13 * DU3 (KY) + 

2 SIC * (U1 (KX+l,KY,BLl) - 2. * u1 (KX,KY,HLl) + 

3 u1 (KX-l,KY,HLl)) 

SRSL 
ARSL 
MRSL 
ARR 1 
.4RR3 
I.4D D 

store 
addition 

multiplication 
array with 1 dim. 
array with 3 dims. 

index addition 

real 
real 
real 
na 
na 

integer 

single 
single 
single 

na 
na 

single 

local 
local 
local 
na 
na 

local 

1 
6 
5 
3 
5 
2 - 

62280 
373680 
31 1400 
186840 
311400 
124560 

Table 6.1: Static and dynamic statistics of kernel (Livermore Loops). 

The program analyzer decomposes this statement not only in the number and type of 
operations involved, but also makes the distinction that the integer addition (2  operations) 
executes in the context of an index array. Normally operations between indexes are han- 
dled different from other arithmetic operations. The program analyzer keeps separate 
counters to  distinguish between conventional arithmetic operations in expressions and 
arithmetic operations using indexes. 

5.2.1. Description of the Test Programs 

We ran the program analyzer for the ten programs in table 5.2.  There are three 
group of programs: small integer oriented tests like the Baskett puzzle, Shell, and Erathos- 
tenes. There are some floating point computational intensive programs like Los Alamos 
benchmark. The Livermore Loops, the NAS benchmark, Whetstone, the Mandelbrot set, 
and the Linpack benchmark. The last group is represented by the Smith benchmark that  
contains intensive integer, floating point and logical computations. The execution time for 
the programs varies from .I of a second to approximately 600 seconds on a CRAY S- 
MP/48. 
0 Los Alamos: this is one of the benchmarks used by LANL Computing and Com- 

munication Division [BRI86, BUC85, GRI84, SIM871 to  evaluate the performance of 
supercomputers. This code is known as BMK8A1 an consists of a series of simple 
vector calculations (run in scalar mode in this study) to  test the rates of vector 
operations as a function of vector length. The vectors are stored in contiguous 
memory locations. Typically one million floating-point operations are timed. 

0 Conway-Baskett  puzzle: This benchmark is a program developed by Forest 
Baskett [BEE841 and normally used to evaluate the performance of microcomputers 
and RISC-based machines [PAT82]. The program is a depth-first, recursive, back- 
tracking tree search algorithm to find a solution to  a particular puzzle invented by 
John Conway. The puzzle consists in placing 18 tri-dimensional pieces to form a 
cube of five units on each side. 
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Name 
.A lamos 
Baskett 

Erathostenes 
Linpac k 

Livermore 
11andelbrot 

SAS Kernels 
Shell 

Smith 
\Vhetstone 

Table *5.2: Characteristics of the test programs 
Description of the program 

Los Alamos benchmark for vector operations execution rates 
A backtrack algorithm to solve the Conway-Baskett puzzle 
The sieve of Erathostenes on 60000 numbers 
The standard linear equations software of Argonne N3t. Labs. 
The twenty four Livermore Loops 
Compute the hlandelbrot set on a grid of 200 by 100 points 
NASA Numerical Aerodynamic Simulation benchmark 
Sorts and array of 10000 random number using the Shell sort 
A collection of tests similar to our System Characterizer 
The Whetstone benchmark 

Table 6.2: Characteristics of the test, programs. 

Erathostenes sieve: This program is a simple search for prime numbers using the 
centuries-old sieve met hod. The computation of arithmetic expressions is minimal 
and most of the time is spent in doing comparisons. 
Linpack benchmark: This is one of the most popular benchmark used in perfor- 
mance evaluation for floating point computations. The program consist of two rou- 
tines: the first computes the decomposition of a matrix, and the second routine solves 
a system of linear equations represented by the above matrix. The program was ori- 
ginally designed t o  give the users of the Linpack software package information about 
the possible execution times for solving linear equations. Nowadays, there are over 
two hundred machines reported in the list collected by J. Dongarra at the Argonne 
National Laboratory IDON85, DON87a, DON87b, DON881. Because Linpack run- 
ning in single precision fits completely in a 64K cache, the performance reported by 
this benchmark may be higher than the actual performance obtained by solving 
linear equations in real problems. In some machines a small memory-cache 
bandwidth can slow down considerable the execution i f  the matrix does not f i t  
entirely in the cache [MIP87). 

T h e  Livermore  Loops: This benchmark is a set of 24 kernels t ha t  measure FOR- 
TRAN numerical computation rates [MCM86]. The loops (originally fourteen) were 
written by Fred McMahon in the early seventies and represent the kind of computa- 
tions found in Livermore codes. The benchmarks gives the computational rates for 
each of the loops and for different vector lengths. I t  also computes a sensitivity 
analysis of the harmonic mean for seven work distributions giving a total of forty 
nine possible CPU workloads. The benchmark is a good test of the capabilities of 
the compiler t o  produce efficient (vectorizable) code. The range of performance for 
vector machines can vary up to two order of magnitude in the different loops. The 
twenty four loops are shown in table 5.3. 
Mandelbrot set: This program computes for a window of 200 X 100 points on the 
complex plane the mapping Z,CZ,~-~ + C, until the norm of 2, is greater than 2. or 
the number of iterations is equal to one hundred. This program (variations of it) is 
used to benchmark graphic engines. All the computations are scalar and with float- 
ing point variables. 
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Vumber 
1 
2 
3 
4 
5 
6 

8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 

I 

1 

Table 5.3: Livermore Loops kernels 
Kernel Description 
hydro fragment 
incomplete Cholesky - conjugate gradient 
inner product 
banded linear equations 
tri-diagonal eliminstion 
general linear recurrence equations 
equation of state 
A.D.I. integration 
integrate predictors 
difference predictors 
sum of two vector elements 
difference of two vector elements 
particle in cell (2  dimensions) 
particle in cell ( 1  dimension) 
casual FORTRAN (development version) 
Alonte Carlo search loop 
conditional computation 
2 dimensions explicit hydrodynamics fragment 
general linear recurrence equations 
discrete ordinates transport 
matrix product 
Planckian distribution 
2 dimensions implicit hydrodynamics fragment 
finds first minimum in an array 

Table 6.3: Livermore Loops kernels. 

0 NAS benchmark: The N.4S kernel benchmark was developed by D. Bailey and J. 
Barton to assist in supercomputer performance evaluation [RAI85a]. The program 
consists of seven kernels that represent calculations typical of NASA Ames supercom- 
puting. The kernels perform the following calculations [BAI85b]: “outer product”  
matrix multiplication (MXM), two dimensional complex Fast Fourier Transform 
(CFFT2D), vector Cholesky decomposition (CHOLSKY), vector block tridiagonal 
matrix solution (BTRIS), sets up an array for a vortex method solution and performs 
Gaussian elimination (GMTRY), creates new vortices according to certain boundary 
conditions (EMIT), and inverts three pentdiagonal matrices (VPENTA). The pro- 
gram executes approximately 2 billion floating point operations and has extensive 
calculations with multidimensional arrays with different loop memory strides. Test- 
ing this benchmark can use four different levels of tuning depending on the number 
of lines changed, deleted or inserted. This program is normally run only in super- 
computers given that it may take several hours to  run in a machine without vector 
operations. 

Shell sort: This is a small program tha t  sorts ten thousand random numbers using 
the Shell sort [KNU73]. The algorithm was  proposed by Donald L. Shell in 1959 and 
is also called sort by diminishing increments. The number of operations executed by 
the program is O(N3I2) .  The operations executed are comparisons and memory 
transfers. 

0 
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PROGRAM STATISTICS 
Lines processed -> from 1 t o  37 1371 

mnem operation 
[srs l l  store (01) 
[arsl]  add (02) 
[mrsll malt (03) 
[drsll  d i v i d e  (04) 
[trsl] trans (07) 
[sisll store (15) 
[ s i s l l  add (16) 
[ s i s l l  trans (21) 
[andll and-or (43) 
[crs l l  r-sin (44) 
[c i s l ]  i - s i n  (46) 
[procl proc (51) 
[argr] r-sin (52) 
[gotol goto-s (61) 
[ loin]  do - in i  (63) 
[ ~ O O V ]  do-lop (64) 

occurrences f rac t ion  
occur : 8 (0.1481) 
occur: 8 (0.1481) 
occur: 4 (0.0741) 
occur: 2 (0.0370) 
occur: 12 (0.2222) 
occur : 1 (0.0185) 
occur: 3 (0.0556) 
occur: 3 (0.0556) 
occur : 1 (0.0185) 
occur : 1 (0.0185) 
occur: 1 (0.0185) 
occur: 2 (0.0370) 
occur: 2 (0.0370) 
occur: 2 (0.0370) 
occur: 2 (0.0370) 
occur : 2 (0.0370) 

Figure 6.2: Static statistics for the Mandelbrot set. The fraction column gives the static distribution 

of the occurrence of the parameters in the source code. 

0 S m i t h  benchmark: I t  is a FORTRAN program which consists of 77 individual 
timed loops, each of which measures some aspect of machine performance. I t  con- 
tains tests of branch code, numeric code, procedure calls, and data  movement, and 
has samples of other computations, such as matrix multiplies and bubble sorts 
[SMI88]. This benchmark is designed to  measure various aspects of system perfor- 
mance; the user can then weight the various performance factors as he sees fit.  More 
than seventy machines have been measured, ranging from microcomputers to  mul- 
tiprocessors and supercomputers. The benchmark has been designed to  prevent most 
optimizations performed by compilers. 

W h e t s t o n e  benchmark: this is a synthetic benchmark based on the statistics of 
949 programs written in ALGOL 60 a t  the National Physical Laboratory and Oxford 
University during the late sixties [CUR76]. The results using this benchmark are still 
quoted by some manufactures but few accept the validity of this benchmark as a real 
measure of floating point intensive calculations. The most important reason is t,hat 
the distribution of statements in programs has changed as a results of improvements 
in the programming methodologies, programming languages and most important 
machine architectures. The benchmark produces a single figure of merit for scalar 
processing. This number represents the performance for the execution of its ten 
modules (tests), and combines the performance of floating point operations with the 
performance of trigonometric and integer operations. I t  is important t o  note that  
most of the time is spent on module 7 that  makes extensive use of trigonometric 
functions. 

0 



The Program Analyzer 43 

5.3. Output  from the Program Analyzer 

In this subsection we present an actual example of how the program analyzer works. 
In figure 5 . 2  we can see the output for the Mandelbrot program. \Ve can see that for each 
parameter we report the number of static occurrences in the code and the static distribu- 
tion of parameters. Although in this research the static distribution does not give us any 
additional information, these statistics are sometimes by software engineers t o  compute 
software complexity metrics. 

It. is possible to insert ‘compiler’ directives in the source code to instruct the program 
analyzer to produce partial reports for some number of source lines. This gives the user 
the opportunity of knowing the static and dynamic statistics of that  portion of the code, 
and also to produce, with the aid of the system characterizer and the execution predictor, 
execution time estimates of subparts of the program. 

5.4. Programs Statist ics  

Tables 5.5  and 5.6 present the dynamic statistics of each program sorted by value. 
and also their cumulat,ive distribution. The table shows the most costly parameters for 
each program in terms of the number of times each parameter is executed. These not 
necessary represent the most time consuming parameters, which depend on the charac- 
teristics of the machines. Tha t  type of information will be generated using the program 
predictor and the parameters of each machine. We see in the distributions that  there is a 
small number of operations that  account for almost all the execution time. In all the pro- 
grams except the IVhetstone benchmark between five and seven operations represent 
almost ninety percent of the total number of operations executed. 

The number of times each operation executes depends on the input given to  the pro- 
gram. Executing the program for a different data input will almost always produce a dif- 
ferent distribution in the dynamic statistics. The parameters t ha t  correspond to the 
access of 1 dimensional arrays (ARRI), the loop overhead time (LOOV), the arithmetic 
operations -add and multiply- are the most executed operations for all the programs. But 
the distribution of these parameters varies considerably from program to program. The 
reason for this variation is that some programs (Mandelbrot, Shell, Erathostenes) have a 
small number of lines, between 40 and 100. In fact, these program represent only a very 
small fraction of the total execution time of our workload. Five of the benchmarks exe- 
cute in less than 2 seconds on the CRAY X-MP, while the other five programs take 
between 10 and 000 seconds. Because these programs use a small number of different 
operations normal errors in our measurements are not balanced out by other errors on 
other operations. An example of this is the hlandelbrot program tha t  executes mainly 
scalar floating point arithmetic without using array elements. In the case of the Los 
Alamos benchmark the code is a repetition of small loops of the form: 

CALL JOBTIM (T1) 
DO 20 J = 1,LOOPS 

DO 20 I = 1,LEN 
R ( 1 )  = Vl(1) 

20 CONTINUE 
CALL JOBTIM (T2) 

* s1 
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assignment 

these kind of constructs are not representative of real applications. If we compare the 
statistics for the Livermore Loops wi th  a program length of 1900 lines, against the results 
reported by Knuth [ K N W l ,  VVECI841 we find a fairly good agreement between the two dis- 
tributions: see table 5.4.  

sta d y n  sta d y n  
.5l 67' 55.5 66.3 

Distribution of Statements 
Statement 11 Icnuth I Livermore 

call user 
call standard 
return 
if 
do loop 
got0 
other 

3 3 
1 1 
-1 3 

10 1 1  
9 3 
9 9 

- 

- 
3 I 

7.4 4.9 
9.2 1.6 
2.3 4.9 
6.5 14.1 

11.1 3.2 
5.7 2.9 
2.3 2.0 

Table 6.4: Static and dynamic statistics at the statement level (all quantities in percentages). 



~ ~~ ~ 

The Program Analyzer 

pararn 

. N S L  
ARRl 
SRSL 
SIRSL 
LOOV 
ARR2 
ARSG 
MRSG 
IADD 
SRSG 
TRSG 
ARR3 
AISL 

AGRS 
PROC 
SISL 
TISL 
AGIS 
CRSL 
AISG 

ORIGINAL PAGE IS 
OF POOR QUALITY 

Livermore 
dYn frac 

42082283 ,2447 
25874691 .1446 
23755236 .I381 
15721656 ,0914 
13014396 .0757 
10725888 .0624 
8765400 .0510 
6963630 .0405 
6576587 ,0383 
6576586 .0382 
1888908 .0110 
1307880 ,0076 
1121655 .0065 
979662 .0057 
975927 ,0057 
878034 .0051 
867738 .0050 
791125 .0046 
710287 .0041 
451542 .0026 

-15 

pararn 

ARRl 
LOOV 
SRSG 
MRSG 
ARSG 
IADD 
ARSL 
LOIN 
AGRS 
AGIS 
PROC 
AISL 
EISL 
TRSL 
DRSL 
XRSG 
TRSG 
SISG 
CISL 

ANDL 

AlrunO. 

dy n 
322006015 

934931 12 
9 1003000 
84000000 
49000000 
35000000 
2 1000197 

2314108 
712296 
180000 
179592 

4000 
2000 
1445 
1105 
1000 
1000 
1000 
686 
392 

frac 

.4607 
,1338 
,1302 
,1202 
.0701 
.0501 
.0300 
.0033 
,0010 
.0003 
.0003 
.oooo 
.oooo 
.oooo 
.oooo 
.oooo 
.oooo 
.oooo 
.oooo 
.oooo 

cum 

,4607 
,5945 
,7247 
,8449 
,9150 
.96.51 
,9951 
,9984 
,9994 
,9997 
1 .ooo 
1 .ooo 
1 .ooo 
1 .ooo 
1 .ooo 
1 .ooo 
1 .ooo 
1.000 
1 .ooo 
1 .ooo 

I NAS kernela 
param 

ARR2 
IADD 
ARSL 
ARR3 
MRSL 
LOOV 
SRSL 

MRSG 
ARR 1 
ARR4 
ARSG 
SRSG 
TRSL 
AISL 
ERSL 
AGRS 
PROC 
DRSL 
LOGS 
TRSG 

685238000 
566581256 
551229 173 

~ 452430305 
402504958 
363214880 
3 I4803900 
258770855 
246288901 
183914506 
173863550 
8306759 1 
62408350 
18740872 
14561611 
13931792 
12000684 
5495002 
3413494 

frac 

.2273 

.1198 

.099 1 

.0964 
,079 1 
.0704 
.0635 
.0550 
.0452 
,043 1 
.0322 
.0304 
.O 145 
.0109 
.0033 
.0025 
.0024 
.0021 
.0010 
.0006 

cum 

,2273 
.3471 
,4462 
.5426 
.I3217 
,6921 
,7556 
,8106 
,8558 
,8989 
.93 1 1 
.9615 
.9760 
,9869 
.9902 
.9927 
.9951 
,9972 
,9982 
,9988 

cu rn 

,2447 
.3893 
,5274 
3188 
,6945 
,7569 
,8079 
,8484 
.8867 
.9249 
.9359 
,9435 
,9500 
.9557 
.9614 
.9665 
.9715 
.9761 
,9802 
.9828 

I Baskett 

pararn 

CISG 
IADD 
LOOV 
ARR2 
ARR 1 
ANDL 
GOTO 
TISL 
AGIS 
CISL 
TISG 
AISL 
SISL 

LOIN 
PROC 
SISG 
AISG 
MISL 
TRSL 
SRSL 

dYn 
1365170 
1133 15.4 
790495 
766720 
685213 
540905 

57795 
43390 
38663 
31913 
30855 
30152 
29909 
2 1468 
19336 
6009 
5996 

445 
4 
1 

frac 

,2439 
2024 
,1412 
,1370 
,1224 
.096G 
,0103 
.0078 
.0069 
.0057 
.0055 
.0054 
.0053 
.0038 
,0035 
.0011 
.oo 1 1 
.ooo 1 
.oooo 
.oooo 

- 
cur 

24:' 
,441 
.587 
.72 
.841 
.9 4: 
.95: 
,961 
.96t 

- - 

.98i 

.99( 

.99 

.99: , 

.99! 
1 .O( 
1.01 
1 .O( - 

pararn 

ARR 1 
LOOV 
SRSL 
ARSL 
hlRSL 
ARRZ 
AGRS 
AGIS 
PROC 
TRSL 
CISL 
TISL 
L4DD 
DRSL 
MISL 

GOTO 
CRSL 
AISL 
LOIN 
ANDL 

LLnpack 

dYn 
27356020 

9735148 
9469508 
9344931 
8930874 
1604752 
1089573 
952191 
819045 
674414 
548318 
288574 
283722 
275205 
270000 
267488 
265149 
15457 1 
147117 
133822 

frac 

.3767 

.1341 

.1304 

.1287 

.I230 

.0221 

.0150 

.0131 

.0113 

.0093 

.0076 

.0040 

.0039 

.0038 

.0037 

.0037 

.0037 

.0021 
,0020 
.0018 

cum 

.3767 

.5108 
5412 
,7699 
,8929 
.9 150 
,9300 
.9431 
.9544 
.9637 
.9713 
.9753 
.9792 
.9830 
.9867 
3904 
.994l 
,9962 
,9982 
.9999 

I I  Erathomtenem 
I 

param 

ARRl 
CISL 

LOOX 
LOOV 
TISL 

GOTO 
SISL 
AISL 
Lorn 
TRSL 
PROC 
LOIN 
AGRS 
SRSL 
ARSL 
- 
- 
- 
- 
- 

dYn 
324880 
216994 
150938 
ll9999 
113943 
56754 

6057 
6057 
3245 

2 
2 
2 
2 
1 
1 
- 
- 
- 
- 
- 

frat 

.3252 
2172 
.1511 
.1201 
.I141 
.0568 
.006 1 

.006 1 

.0032 

.oooo 

.oooo 

.oooo 

.oooo 

.oooo 

.oooo 
- 
- 
- 
- 
- 

- I  cu I - - 
.32. 
.54: 
.69 
.81. 
.92 
.98 

.99f 
,991 I 

1.01 
1.01 
1 .O' 
1.01 

,991 , 

I 1.01 1 
- 
- 
- 
- 
- - 

Table 5.51 Dynamic statistics of test programs (I). In the third and fourth columns we report the 
fraction of the total execution time that each parameter represents and the cumulative dis- 
tribution . 
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dy n 

2348726 
2328726 
2308524 

597131 
597131 
597131 
597131 
577133 
577131 

80207 
20200 
20002 

20 1 
2 
? 

I 2 

I 

psram 

ARSL 
SRSL 
MRSL 
GOTO 
CRSL 
CISL 

. 4 \ i L  
N S L  
SISL 

TRSL 
LOOV 
TISL 
LOIN 
PROC 
DRSL 
AGRS 

param 

ARRl 
TISL 
SISL 
AISL 
CISL 

GOTO 
LOOV 
LOIN 
DISL 
TRSL 
PROC 
AGRS 
MISL 
- 
- 
- 

Mandelbr ot 

dyn 
2021588 
739869 
721809 
721794 
721682 
263303 
230018 

16 
14 
2 
2 
2 
1 
- 
- 
- 

~ ~~ 

param 

ARRl 
ARSL 
SRSL 
AGRS 
MRSG 
LOOV 
TRSG 
AISG 

GOTO 
MISG 
TISG 
CISG 
DRSG 
PROC 
SISG 
SRSG 
MISL 
IADD 
SINS 
DRSL 

frac 

,2206 
,2187 
.2 168 
,0561 
.Os6 1 
,056 1 
.OS61 
.0542 
,0542 
.0075 
.oo 19 
.oo 19 
.oooo 
.oooo 
.oooo 
.oooo 

~~ 

dyn 
301825 
210650 
161900 
135592 
113700 
111650 
92409 
84000 
55250 
.52500 
51i58 
51750 
49150 
45662 
31500 
23400 
21009 
21000 
12800 
7850 

cum 

.2206 
,4393 
.6561 
.i 122 
.7683 
,8244 
.8805 
,9347 
.9889 
,9964 
.9983 
1.000 
1 .ooo 
1 .ooo 
1.000 
1.000 

Smith 
Jaram 11 dyn 

ARRl 
TIS1 
M S L  
SISL 

LOOV 
3 0 T O  
X O M  
TRSL 
CISL 
IADD 
ANDL 
MISL 
AGIS 
LOIN 
ARSL 
SRSL 
SRDG 
ARR2 
PROC 
DRSL 

166383224 
58968760 
52178266 
49496467 
43184695 
22826813 
19325095 
12053242 
8077412 
6707232 
5756582 
5585525 
42003 12 
334672 1 
3025742 
2815742 
2457705 
1420727 
900312 
472761 

frac 

.3535 

.1253 

.1109 

.lo52 

.0918 

.0485 

.04 1 1 

.0256 

.O 172 

.0143 
,0122 
.0119 
.0089 
.007 1 
.0064 
.0060 
,0052 
.0030 
.0019 
.0010 

cum 

.3535 

.4788 

.5897 

.6949 

.7867 

.8352 

.8763 
,9019 
.9191 
.9334 
.9456 
.9575 
,9664 
.9735 
.9799 
.9859 
.99 11 
.9941 
.9960 
.9970 

Shell 
f rnc 

.3i30 
,1365 
.1332 
.1332 
,1332 
,0486 
,0424 
.oooo 
.oooo 
.oooo 
.oooo 
.oooo 
.oooo 
- 
- 
- 

cum 

.3730 
,509.5 
,6427 
.7759 
.g090 

.9576 
1 .ooo 
1 .ooo 
1.000 
1 .ooo 

- - 

I .ooa 
I .ooa 
1 .ooa 
- 
- 
- 

Whetatone 
frac 

.1801 

.1257 
,0966 
.0809 
.0678 
‘0666 
,0551 
.050 1 
,0330 
,0313 
.0309 
.0309 
,0293 
.0272 
.0188 
.O 140 
.O 125 
.0125 
.0076 
.0047 

- 
cum 

.1801 

.3058 

.4024 

.4833 

.5511 
,6177 
A728 
.7229 
,7559 
.1872 
.8181 
.8490 
.8783 
.9055 
.9243 
.9383 
.9508 
.9633 
.9709 
.9756 

- - 

- 
Table 6.1): Dynamic statistics of test programs (II). In the third and fourth columns we report 

the fraction of the total execution time that  each parameter represents and the cumulative 
distribution . 
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The Execution Predictor 

As we explained in the last two sections, the system characterizer and the program 
analyzer are the only tools that  w e  need to  produce estimates of the execution time of pro- 
grams running in different architectures. characterizer and the program analyzer to obtain 
an estimate of the expected execution time of the application. I t  is clear that  these esti- 
mates have meaning only for the data used in the dynamic analysis of the programs. In 
this section we will obtain prediction for our benchmarks and compare these results to the 
actual running times. 

6.1. Computing  Execution Es t imates  and Experimental Errors 
In section 3.3 we proposed a model of execution in which the total time is a linear 

combination of the number of times each operation executes in the program and the times 
it takes to execute these operations. We gave expressions to compute for each kind of test 
the variance involved in the measurements. The variance in the total execution time for 
an application is 

n 
a2T = C?.u2Pi 

i=l 

where Ci is the number of operations of type i executed in the program. If the experi- 
mental errors are small compared to  our measurements, the total variance in our predic- 
tions will tend to be small. Programs that execute many arithmetic operations tend to 
produce predictions with small intervals of uncertainty. This also applies for systems 
where the clock resolution is fine. 

Figure 6.1 presents a sample output from the execution predictor. Each line contains 
the number of times the operation was executed, and the fraction of the total that that 
number represents. The output also includes the expected execution time, the fraction of 
the total time and the standard deviation. 

L 

6.2. Execution Predict ion and  Sys tem Characterizers 

As mentioned in the introduction, one of the problems with benchmarks is relating 
their results to the actual characteristics of the machine and the application programs. 
Knowing that a computer system runs the Dhrystone benchmark at a certain rate does 
not give us sufficient information about what will be the expected execution time of other 
programs. Obviously if machine A has a Whetstone rate that  is several times greater 
than the rate for machine B, we can expect that  scientific applications will run faster on 
machine .4, but this does not give us precise information about how fast the programs will 
actually run. Also the machines we need to evaluate are normally comparable in their 
overall performance, and knowing that one has better results for a couple of benchmarks 
does not imply that  it is going to  run our applications faster; especially when these appli- 
cations execute only a small set of operations that run faster in the machine that did not 
get the best results using a particular set of benchmarks. The situation gets complicated 
when the performance evaluation index produced using some group of benchmarks differs 

47 
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PROGRAM STATISTICS FOR THE VAX-11/785 
Lines processed -> from 1 to 37 1373 

mnem operation 
[srsl] store (01) 
[arsl] add (02) 
[mrsll mult (03) 
[drsl] divide (04) 
[trsll trans (07) 
[sisl] store (15) 
[aisll add (16) 
[tis11 trans (21) 
[andll and-or (43) 
[crsl] r-sin (44) 
[cisll i-sin (46) 
[proc] proc (51) 
[agrsl r-sin (52) 
[goto] goto-s (61) 
[loin] do-ini (63) 
[loov] do-lop (64) 

times-executed fraction 
exec : 2328726 (0.2187) 
exec : 2348726 (0.2206) 
exec : 2308524 (0.2168) 

exec : 80207 (0.0075) 
exec : 577131 (0.0542) 
exec : 577133 (0.0542) 

exec : 597131 (0.0561) 
exec : 597131 (0.0561) 
exec : 597131. (0.0561) 
exec : 2 (0.0000) 
exec : 2 (0.0000) 
exec : 597131 (0.0561) 
exec : 201 (0.0000) 
exec : 20200 (0.0019) 

exec : 2 (0.0000) 

exec : 20002 (0.0019) 

execution-time fraction std.dev. 
time: 0.900751 (0.0703) 0.452488 
time: 3.453567 (0.2695) 0.128027 
time: 4.666220 (0.3641) 0.438389 
time : 0.00000~ (0.0000) 0.000000 
time: 0.212172 (0.0166) 0.022616 
time : 0. OOOOOO (0 . 0000) O . 000000 
time: 0.682171 (0.0532) 0.027356 
time: 0.057306 (0.0045) 0.004174 
time: 0.536582 (0.0419) 0.027528 
time: 1.276666 (0.0996) 0.141042 
time : 0.997388 (0.0778) 0.066700 
time: 0.000042 (0.0000) 0.000003 
time : 0.000001 (0.0000) 0.000001 
time : 0.000000 (0.0000) 0.000000 
time: 0.003643 (0.0003) 0.000492 
time: 0.027965 (0.0022) 0.006056 

Estimate execution time = 12.814481 sec. Standard Deviation = 0.663125 

Figure 6.1: Execution time estimate lor the Mandelbrot program run on a Vau-11/785. 

from the actual evaluation obtained by running the real codes. In these cases it is 
extremely difficult t o  find the causes or to  modify the benchmarks to  better represent the 
characteristics of our workload. The major flaw in the benchmark approach is that  we 
lack a model for the system that  we are trying to characterize and this makes very diffi- 
cult to correlate our benchmark results with application programs. 

6.3. Model Validation 
One of the most important tests for a computer model is the experimental validation 

of the accuracy and sensitivity of the model. This validation is important for several rea- 
sons: if the execution estimates agree with the experimental validation, we can have confi- 
dence that the model really characterizes the system. This provides evidence that the set 
of parameters used in the program analyzer are adequate to  decompose applications. It  
also increases our confidence that  the estimates produced by the execution predictor are 
acceptable (within a confidence interval) with the real execution time of actual codes. On 
the other hand, if for some applications the execution estimates do not agree with the 
experimental validation, w e  can conclude that they are some characteristics in the com- 
puter system that our model is missing or fails to capture. In this situation it is possible 
to  isolate in the application program the operation or set of operations that cause the 
problem and to  include them in a new more general model. This is possible because the 
system characterizer, the program analyzer, and the execution predictor use a machine 
model that  is common to  all machines that execute programs written in FORTRAN. \Ire 
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may build a new model by incorporating some additional parameters to our linear equa- 
tion. T o  improve the model ive need to write new tests to detect and measure these 
parameters in the system characterizer, modify the program analyzer to count the 
occurrence of these operations in the source codes, and produce new estimates using the 
results obtained with the system characterizer and the program analyzer. Isolating the 
portions of the codes that cause the erroneous prediction makes it possible to  redefine 
some parameters to detect machine features not previously detected with the model. Con- 
tinuing this process will lead to a more complete model of computer systems and to more 
accurate predictions of execution times. Here the term 'complete' refers to our ability to  
predict, using the characterization of a computer system to  obtain the expected execution 
time of some set of applications. This way of approaching system characterization and 
performance evaluation agrees with the premises we mentioned earlier about experimenta- 
tion and incremental model refinement. 

We can illustrate the point made in the last paragraph with the following example. 
In the first version of our model arithmetic operations were classified according to  the 
characteristics of the operands. independent of where the operation appeared in the text. 
The first predictions that we made for the Livermore Loops running on a the VAX-11/785 
were not very far from the actual running times for some loops, but for a couple of them 
the actual running times were almost three times smaller than the execution estimates. 
When we examined the source code w e  found that loops 1, 4, 7, 8, and 18 have the charac- 
teristic of adding or subtracting a constant t o  most of their array indexes. In our model 
an integer arithmetic operation inside of one of the dimensions of the array was con- 
sidered identical t o  the same operation executed between two variables of the same type, 
size and class storage. In almost all the existing compilers, arithmetic operations between 
indexes inside a loop use registers instead of making reference to memory locations, and in 
other cases, the constant is added to the base-descriptor of the array a t  compile time elim- 
inating the unnecessary operation. 

We 
improved our model to make a distinction between an integer arithmetic operation exe- 
cuted in the context of making a reference to an array element, and a normal operation 
between integer variables in expressions. In addition we wrote a small set of tests to 
measure the execution time of these new operations in the system characterizer. The new 
predictions obtained using this new approximation were as good as the best obtained pre- 
viously. 

These are not an optimization but a standard features in most compilers. 

8.4. Execut ion  Predictions and Actual  Running  T i m e s  

We obtained execution estimates for the programs in table 5.2 and for each of the 
machines in table 4.1. Aside from this, we also executed each of the programs in the same 
systems, and measured the actual execution times. We tried to  reproduce the same condi- 
tions in these tests as when we ran the system characterizers. Only in this way we can 
guarantee that  the execution estimates obtained using the results of the system character- 
izer correspond to the same systems in which the programs were run. In tables 6.1-6.2 
and in figures 6.2-6.4 we present the measurements along with the estimates. All the 
results are plotted together in figure 6.5. We also show the difference between the real 
measurements and the predictions. 
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Table 6.1: Execution estimates and  actual running times (I) 

System 

CRAY S-MP/48 
CYBER ?05 
IBM 3090/?00 
Amdahl 5840 
Convex C-1 
VAX 8600 
VAX- 11/i85 
VkY-11/780 
Sun 3/50 
IBM RT-PC/1?5 

II 
real 
(seci 

63.8 
01.1 
80.5 

345.8 
236.1 
265.3 
701.i 

1581.7 
6273.2 
3881.0 

Dred 

II average 
root mean sa. 

error 11 real I Dred 

83.0 
73.4 

3n.2 
243.6 
?66.7 
758.3 

1X?.7 
3iQ5.8 
3810.0 

ivermore 
pred error 
(sec) (76) 

16.0 +10.46 
31.7 -1.25 
18.5 -5.13 

- - 
60.0 +2.06 
88.7 +0.57 

?55.0 +14.60 
653.5 +6.06 

2583.7 +5.16 
1573.8 -2.25 

+3.56 
6.00 

-5.41 ?.?3 
+3.18 9.75 
+0.53 ?.8? 
+KO7 7.38 
+7.65 14.85 

-1.85 6.20 

-?.02 
6.55 

n 
real 
(sec) 
1.002 
0.676 
0.220 
3.344 
3.048 
3.400 
11.36 
33.42 

163.04 
105.43 

pred 
(set) 
1.057 
0.588 
0.2?6 
3.546 
3.380 
3.614 
12.82 
32.13 

165.81 
104.00 

( s 4  
0.66 
1.16 
0.78 
2.67 
?.32 
3.24 
8.27 

16.17 
8.315 
7.40 

error 
(55) 
+5.48 

-13.02 
+2.73 
+&04 

-14.30 
+3.55 

4-12.85 
-3.86 
+1.14 
-1.27 
-0.07 

8.04 

11 (sec) 1 isec) 
-5.71 0.140 0.161 

-10.85 
+18.18 
+18.73 
-15.64 
+14.80 
+12.06 

+8.88 
+17.78 
f10.35 

+&OS 
15.80 

error 

-11.88 
-10.77 
-18.64 
-0.40 

-10.80 

+33.00 
-3.80 
12.45 

Table 6.11 Execution estimates and actual running times (I). All real times and predictions in 

seconds; errors in percentage. 

The result for the Livermore Loops on the Amdahl 5840 is missing because the com- 
piler complained of an error in the program when the tests were run1. The N.4S kernels 
and the linpack program were not available when the test program were run  on the 
Amdahl 5840 and the IBXl 3090/200. On the Convex C-1, VAX 8600, VAX-11/785, and 
VAx-11/780 the NAS kernels does not run in single precision2. 

1 The  code generator detected an error in the code produced by the first pass module. 
2 The program divides by zero on these machines if the benchmark is executed using 32-bit f l oa t  

ing point numbers. The random number generator needs 6 4 b i t  numbers to execute correctly 
PAI871. However on the SUN 3/50 and IBM RT-PC/125 the program executed without errors with 
single precision. 
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Whetstone 
real pred error 
(sec) (sec) (%) 
0.302 0.206 -1.00 

Table 6.2: Execution estimates and  actual running  t imes (n) 

average 
error 
(57) 
+1.01 

System 

CRAY X-MP/48 
CYBER 205 
IBM 3000/200 
Amdahl 5840 
Convex C-1 
VAX 8600 
VkX- 111785 
VAX-11/780 
Sun 3/50 
IBM RT-PC/lZ5 

CI'BER 305 
IBM 3000/?00 
Amdahl 5840 
Convex C-1 
VAX 8600 
VAX- 111785 
VAX- 111780 
Sun 3/50 
IBM RT-PC/125 

average 
root mean sq. 

real 
(set) 
533.8 

1456.7 
- 
- 
- 
- 
- 
- 

80800. 
50863. 

138.0 
53.2 

108.0 
103.1 
238.7 
683.0 

1087.5 
014.8 
545.1 

/I average 
root mean sq. 

t I I  

System 

S kernels Shell 

14.02 

I II Smith  

pred 
(4 
65.77 
02.9 
45.3 

185.4 
107.2 
230.0 
601.6 

1018.8 
877.4 
675.3 

0.555 
0.440 
1.803 
1.828 
2.233 
5.800 
0.183 
3.140 
4.68 

error 
(96) 
-1.30 

-32.68 
-14.85 
-6.36 
+2.12 
-3.64 
+1.13 
-6.32 
-4.00 

+23.80 
-4.22 
14.06 

0.481 
0.305 
1.065 
1.770 
2.140 
6.110 
8.803 
3.522 
4.61 - 

-13.33 
-10.23 
+3.80 
-3.17 
-4.16 
+5.34 
-4.14 

+12.17 
-1.50 
I 

-2.84 
8.33 

1.128 
0.350 
1.607 
1.111 
2.870 
7.05 

21.57 
34.24 
12.05 

0.034 
0.335 
1.042 
1.170 
2.631 
7.385 
21.74 
30.5 

11.05 

-17.27 
-4.20 

+14.44 
+5.31 
-8.33 
-7.11 
+0.70 

+15.36 
-0.82 

-0.04 
-4.34 
+2.01 
-4.61 
-3.45 
+5.80 
+0.26 
+2.61 
+3.63 

-0.30 
4.45 

51 

- 
rm 

error 
(96) - 
8.15 

10.85 
0.47 
0.43 
0.08 
0.88 
0.17 
0.52 

13.01 
11.82 

Table 6.2: Execution estimates and  actual running times (11). All real t imes and  predictions in 

seconds: errors in percentsge. 
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Figure 6.2: Predicted times versus real execution times (I). Results for the CRAY X-MP/48, the 
W E R  205 (4 pipes), the IBM 3090/200, and the Amdahl 5840. Scales a re  logarithmic and 
values are reported in seconds. 
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7 
Analysis of Results and Summary 

In this section we make an analysis of the data obtained with the system character- 
izer. the program analyzer and the execution predictor and show how these results can be 
combined to identify the strong and weak features of the systems with respect to the 
workload used. In section 7.2 we discuss some of the factors that  must be addressed in 
order to  improve the accuracy of our execution estimates. LVe finish this report by giving 
a summary in section 7.3. 

7.1. Analysis of Results 
,A comparison of the execution times between our predictions and real measurements 

show 5everal interesting patterns (figures 6.2-6.4 and tables 6.1-6.2). First we can see that 
the relative performance of the systems is not the same in all programs. For example if 
we consider the behavior of the three fastest machines used in these study we find the fol- 
lowing. The CYBER was the fastest to  run the hlandelbrot program; The CRAY X-MP 
has the shortest t,imes for Los Alamos, The Livermore Loops, the Linpack, the NAS ker- 
nels and the Lbletstone benchmarks1; while the IBM was the fastest on the Smith bench- 
mark. Shell sort, and the Baskett puzzle. If we look a t  the codes of these programs we 
find that in the Mandelbrot. program almost 80 percent of the dynamic statistics 
correspond to  scalar arithmetic and logic operations. On the other hand the programs 
that  the CRAY runs faster have intensive floating point arithmetic operations with 
arrays. LVhile for the Baskett puzzle, the Shell sort and the Smith benchmark the 
predominant char,acteristic is the execution of integer operations with arrays. Except in 
the case of the Erathostenes sieve, our execution eqtimates correspond closely to the 
results obtained in the real executions. W t h  the Erathostenes program the predicted 
times and the real times are almost identical for the three machines (the value between 
the minimum and the maximum execution time is six percent). This difference is less than 
the experimental error due to clock resolution for the IBM 3090/200. 

Relative differences in performance is clearer in the case of the VAX 785, the V.4X 
780, the IBM RT-PC and the Sun 3/50. For the Livermore Loops, the Mandelbrot pro- 
gram. the Linpack benchmark, and Los Alamos, the real measurements and the predic- 
tions indicate a relative performance that  varies from 8:5:2:1 to  14:9:3:12. On the other 
hand, the result of the Shell sort and the Erathostenes sieve indicat,e that  the Sun 3/50 
and the IBM RT-PC are faster than both the VAX 785, and the VAX 780; this agrees 
with the real measurements and our estimates. In this case, their relative performance is 
around .5:.3:.75:1. 

In table 7.1 we present the real and estimated relative performance between the SUN 
3/50 and the IBM RT-PC/125. We see that the estimates agree with the real times in 
predicting which machine will execute faster each of the programs. Except for the Smith 

1 The Linpack and the NAS kernels were not run on the IBM 3090/200 
2 The order is VAX $85, VAX 780, IBM RT-PC, and Sun 3/50. 

56 
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Svstem II c 5 %  

57 

< l o %  

Table 7.1: Relative performance 

< 1 5 %  

7 (70.0) 
7 (87.5) 
6 (85.7) 
8 (88.8) 
8 (88.8) 

10 (100.) 

9 (100.) 
9 (100.) 
8 (80.0) 
6 (60.0) 

program 
Los Alamos 
Baskett 
Erathostenes 
Linpack 
Livermore 
Mandelhrot 
NAS kernels 
Shell 
Smith 
Whetstone 

< '20% 

9 (90.0) 
8 (100.) 
7 (100.) 
9 (100.) 
9 (100.) 

10 (100.) 

9 (100.) 
9 (100.) 

10 (100.) 
8 (80.0) 

11 SUN 3/50 : IBhl RT-PC/125 

1.139 
0.818 
1.611 
1.526 
1.555 
1.765 
0.67 1 
1.678 
2.841 

average 11 L S ; ~  
geometric 

root mean sq. - 

prediction 
1.679 
1.124 
0 . 6 7  
1.679 
1.642 
1.593 
1.743 
0.764 
1.299 
3.305 
1.551 
1.411 

error (%) 
+3.90 
-1.32 
-7.24 
+4.20 
+7.60 
+2.44 

+12.17 
-22.59 
+16.33 

-0.25 

+0.42 

10.37 
- 

Table 7.11 Relative performance between the SUN 3/50 and the Il3M RT-PC/lZS. A value 
greater than one indicates that the IBM RT-PC executes faster than the SUN. The first two 
columns are dimensionless and quantities on the third column are in percentages. 

benchmark, the absolute differences between the real and predicted relative performance 
were less than 20 percent. For this program the predicted time on the IBM RT-PC was 
almost 24 percent greater than the real time. 

The results also indicate that our model works better for programs with long execu- 
tion times and arithmetic operations. In table 7.2 we see how the predictions agree with 
the real execution times for each machine and for different intervals of error. We observe 
that approximately 00 percent of all predictions are within a distance of 10 percent from 
the real execut ion times. 

- "  

CRAY X-MP/48 11 3 (30.0) 
CYBER 205 
IBM 3090/200 
Amdahl 5840 
Convex C-1 
VAX 8600 
VAX-111785 

Sun 3/50 
VAX-11/780 

IBM RT-PC:/125 

1 iio.oj 

4 (44.4) 
5 (55.5) 
2 (22.2) 
4 (44.4) 

s (SO.0) 

2 (25.0) 
1 (14.3) 

4 (40.0) 

Total n 31 134.11 

7 (70.0) 
4 (40.0j 

5 (55.5) 

4 (50.0) 
4 (57.1) 

6 (66.6) 
6 (66.6) 
8 (88.8) 
6 (60.0) 
6 (60.0) 

56 (61.5) 

Table 7.21 Accuracy of the model for different intervals. 

78 (85.7) [ 88 (96.7) 

The numbers inside the parenthesis 
show the proportion of the programs that are inside the error interval. 
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parameter 
array reference ( 1  dim) 
loop overhead (step 1) 
store-real-single-global 
rnultiply-real-single-global 
add-real-single-global 

add-real-single-local 
loop initialization 
argumen t-real-single 
argument-integer-single 

addition in index array 

58 

dyn CRAY 1-LIP 
.4607 .2658 
.1338 .3390 
,1302 .1142 
.1202 .1764 
.0701 ,0533 
.os01 .oooo 
.0300 ,0231 
,0033 .0242 
.0010 .0018 
.0003 .0005 

Table 7.3: Predicted Distribution of Execution Time by Operation (Loa Alamoa) 

VXX 780 
.%lo 
,1594 
.0263 
.3650 
.lo42 
.oooo 
.0443 
.0155 
.0013 
.0003 

SUN 3/50 
.1113 
.0146 
.0032 
.5529 
.2155 
.0054 
.0918 
.0024 
.0018 
.0002 

Darameter 
array reference ( 1  dim) 
loop overhead (step 1 )  
store-real-single-global 
rnultiply-real-single-global 
add-real-single-global 
addition in index array 
add-real-single-local 
loop initialization 
argument-real-single 
argurnent-integer-single 

d y n  
.4607 
.1338 
.1302 
.1202 
.0701 
.0501 
.0300 
.0033 
.0010 
.0003 

VAX 8600 
.4187 
.1796 
.0279 
.2045 
,0946 
.oooo 
,0309 
.0377 
.0013 
.0004 

7 
.3915 

.1138 
.loo9 
.2731 
.1198 
.0015 
,0107 
.0134 
.0026 
.0010 

,2842 
,0732 
.1531 
.0519 
,0039 
.0232 
,0132 
.0015 
.0005 

VAX 785 
,3578 
.1693 
.0578 
.2201 
.0926 
.oooo 
.0404 
.0549 
.0006 
.0004 

Amdahl 
.4871 
2015 
.0848 
.1303 
.0508 
.oooo 
,0309 
.0090 
.0003 
.0002 

.2771 

.oooo 

.0330 

.oooo 

Table 7.3: Distribution of time for the ten most common operations in Los Alams benchmark. The 
numbers in bold have a magnitude that is 50% higher than the geometric mean taking the distribu- 

tions of the ten machines as sample. 

IBM RT 
.0622 
.0517 
.0652 
.4907 
,2282 
.0041 
A924 
.0045 
.0002 
.oooo 

Table 7.3 shows the distribution of the execution times per operations using the esti- 
mates for the Los Alamos benchmark. As w e  expect on different systems the distribution 
of the operations is different, and some operations affect the total execution time more 
strongly than others. Although the add and multiply operations represent only 20 percent 
of the total, for the IBhl and the Amdahl they amount to 18 percent of the execution 
time, but in the case of the Sun 3/50 and the IBM RT-PC/125, this quantity is more than 
70 percent. For the Amdahl 5840 its distribution is quite similar to the dynamic distribu- 
tion. We cannot conclude from this table tha t  the Amdahl is a more balanced system, 
because the execution time of the parameters must be proportional t o  the complexity of 
each operation in addition to how many times the operation is executed. We can see this 
more clearly if we compare the Convex C-1 against the Amdahl 5840. In three of the 
seven programs the Amdahl has better execution times than the Convex (in the predic- 
tions the Amdahl has better times in only two). For the Los Alamos benchmark, the Con- 
vex has a completely different distribution compared to the Amdahl. but because the 
access time of an array element. is 3 times faster in the Convex, the total execution time is 
approximately 30 percent less for the Convex. The numbers in bold type in the table are 
50% above the value of the geometric mean of the same parameter when we take as sam- 
ple all the distributions. 
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Figures 7.1-7.3 show the systems characterization from a different perspective to help 
us explain the relative performance of the systems. In these figures the value of each 
parameter is normalized with respect to the execution of the VAY-11/780. Instead of 
showing all the parameters we chose a representative subset of the most executed opera- 
tions. In particular, arithmetic operations with global variables were omitted given that 
on most systems, except the CYBER 205, the execution times are almost the same with 
local and global operands. 

The CRAI’ X-MP executes faster for almost every parameter, especially floating 
point nrithmet ic operations with single precision, references to  array elements, procedure 
calls, and intrinsic functions. The first two groups represent the most frequently executed 
operations in scientific programs and for this reason the CRAY executes faster the floating 
point intensive benchmarks. On the other hand, the scalar floating point arithmetic 
operations with double precision operands are executed faster on the IBM 3090, and even 
the VAX 8600 has better results than the CRAY X-MP. However as we pointed out in 
section 4.1, our benchmarks executed using 64-bit floating point numbers on the CRAY 
and CYBER 205. 

In figure 7.2 we see that on the Convex C-1 the execution time of almost all arith- 
metic parameters is smaller than the VAX 8600, with the exception of the divide opera- 
tion. This parameter executes slower for single precision floating point and integer data 
types. The normalized results for the VAX 8600 show that for almost every parameter 
the execution on the VAX 8600 is between 4.5 and 7 times faster than the VAX-11/780. 
In the case of the VAX-11/785, arithmetic operations and intrinsic functions are between 
3 and 4 times faster with respect t o  the VAX-11/780, but the difference is less for other 
parameters. TheSSUN 3/50 executes faster integer operations, access t o  array elements, 
branching and loops, but arithmetic operations take more time to  execute. The reason for 
this is that on the SUN the benchmarks were executed using software emulation of float- 
ing point operations. 

The most interesting aspect of these figures is that the relative performance is not 
uniform: some architectures execute faster for some operations but are slower in others. 
Again, this tells us that  a single figure of merit cannot show all the dimensions of the 
system‘s performance. 

7.2. Future Improvements  to Our System 

In last section we showed that most of our predictions are within 15% of the real 
execution times and all but three within 20%. The discrepancy between real and 
predicted times is greater on small programs that use a small number of operations, like 
the Erathostenes sieve, and better on computationally intensive programs. There are still 
some factors that  affect our predictions and they must be taken into account in a new 
version of the system if we desire to produce better estimates. The following paragraphs 
present a discussion of these factors. 

i) Locality and Cache Memory. The code we use to measure individual parameters has 
a degree of locality in the reference of variables. For this reason, estimates for a pro- 
gram that exhibit less locality than our tests will tend t o  produce a larger 
discrepancy with respect to its actual execution time. Although scientific programs 
normally spend most of their time in a small number of DO loops, the amount of 
memory ‘touched’ by these loops tends to be very large. Therefore the hit ratio for 
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ii) 

i i i )  

iv) 

v 1 

vi) 

vii) 

the code is high, but for the data is low. 1Ve ran some tests increasing the number of 
different variables inside the body of the test and also increasing the time between 
successive reference to  the same variable. We found that the measurements obtained 
in this way were larger by four to ten percent. 

Change of Environment in Branches. When a branch is taken or a subroutine call is 
executed, there is normally a change in the set of variables tha t  are referenced. This 
increases the number of cache misses and also the total execution time of the pro- 
gram. If the branch jumps to a new page this may cause a page fault along with a 
context switch. A context switch normally involves flushing the cache and this has 
the effect of increasing the execution time of the program. Several parameters that 
characterize the ‘size’ of the branch will help to measure the penalty that  we pay as 
a function of the distance between the branch and its target. 

Hardware and/or Software Interlocks. In pipelined machines the time it takes to pro- 
duce the next result for a particular operation depends on the context in which this 
operation executes. This time normally depends on the functional and data  depen- 
dencies with respect to the previously scheduled instructions. The data  dependencies 
are a function of the source code, the code produced by the compiler, and the 
hardware. We discussed this problem on section 3.4. 

hlissing Parameters. In our model there are some simplifications that may increase 
the discrepancy between our predictions and the real execution times for some pro- 
grams. An example of this is the access of array elements. We assumed that the 
overhead in accessing an element is constant for different data types and also that 
this overhead is independent of the context in which the access occur. The travers- 
ing of a multidimensional array inside a loop is normally done in a regular way (fixed 
stride). and the compiler may detect that  some dimensions remain constant during 
the whole execution of the loop. With this information the compiler may compute 
the address for the next element using less operations than it will require if we refer- 
ence the element outside the loop. Several new parameters are needed to  represent 
all the different variation in the reference of an array element. 

Limitations of the Linear Model. The assumption that the cost of executing an opera- 
tion is independent of the adjacent operations, data dependencies, etc, does not 
remain valid if we  want to  reduce the error in our predictions. Although it is possi- 
ble to create new parameters that  characterize pair of instructions and with this 
keep the linear model hypothesis, this will create an explosion in the number of 
parameters. An additional disadvantage is that these ‘compound’ parameters lose 
their natural interpretation and it is more difficult to identify weak features in the 
systems. 

Machine Idioms. Some architectures implement special cases of some instructions 
very efficiently. On the VAX architecture it is possible to  multiply an integer by two, 
four or sixteen, then add another integer and use this result as an address during the 
execution of the same instruction. Unless we know the architecture and how the 
compiler works it is not possible for us to detect which are the idioms of a given 
architecture. 

Random Soise Produced by Concurrent Activity. Although we discused this in sec- 
tion 4.1, there is still some potential problem when we run in a loaded system. 
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If there is a peak of activity during the execution of an experiment, our measure- 
ments will be slightly affected by this ‘unusual’ high activity. In programs where 
these paramet,ers are the most executed the ‘noise’ will increase our figures in a signi- 
ficant way. 

7.3. Summary 
In this report, we have presented a new paradigm for system characterization and 

performance evaluation. The principal attribute of this model is t ha t  the set of parame- 
ters wed in the characterization of systems are the same set of parameters used to esti- 
mate the  expected esecution time of programs. The characterization is achieved by run- 
ning a set of software experiments that  identify, isolate and measure hardware and 
software features. LVe exposed the disadvantages and limitations of using current bench- 
marks to characterize systems and infer their performance on workloads different from 
themselves. lye  think that  our approach will enrich the area of performance evaluation in 
several ways. 

(1) .A uniform ‘high level’ model of the performance of computer systems allow us to 
make a better comparison between different architectures and identify their differ- 
ences and similarities when the systems execute a common workload. 
Csing the characterization to  predict performance provides us with a mechanism to 
validate our assumptions on how the execution time depends on individual com- 
ponents of the system. 
Lye can study the sensitivity of the system to changes in the workload, and in this 
way detect imbalances in the architectures. 

,Application programmers and users can identify the most time consuming parts of 
their programs and measure the impact of new ‘improvements’ on different systems. 

For procurement purposes this is a less expensive and more flexible way of evaluating 
computer systems and new architectural features. Although the best way to evaluate 
a system is to run a real workload, a more extensive and intensive evaluation can be 
made using system characterizers to select a small number of computers for subse- 
quent on-site evaluation. 

In the last thirty years we have seen an explosion of new ideas in many field of com- 
puter science, but one problem that hasn’t received much attention is how to  make a fair 
comparison between two different architectures. Given the impact that  computers have 
in all aspects of society we cannot afford to continue characterizing the performance of 
such complex systems using hlIPS, MFLOPS or DHRYSTONES as our units of measure. 

( 2 )  

(3) 

(4 )  

( 5 )  
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Table 9.8: Characterization results for regions 8-12. A value I <  indicates that the parameter 
was not detected by the experiment. The results for the Amdahl 5840 were obtained using 

a simpler model. 



. 

1. Report No. 

NASA CR 1775 1 1 

Report Documentation Page 
2. Government Accession No. 

17. Key Words (Suggested by Author(s)) 

Machine Characterization and Benchmark Performance 
Prediction 

18. Distribution Statement 

7. AuthorM 

Execution profilers 
Performance prediction 
Machine characterization 

Rafael H. Saavedra-Barrera (University of California, 
Berkeley, CA) 

9. Performing Organization Name and Address 

Unlimited-Unclassified 

Subject category: 62 

Ames Research Center 
Moffett Field, CA 94035 

19. Security Classif. (of this report) 20. Security Classif. (of this page) 21. No. of pages 

12. Sponsoring Agency Name and Address 

22. Price 

National Aeronautics and Space Administration 
Washington, DC 20546-000 1 

Unclassified 

15. Supplementary Notes 

Unclassified 83 A04 

3. Recipient's Catalog No. 

5. Report Date 

December 1988 
6. Performing Organization Code 

~~ 

8. Performing Organization Report No. 

10. Work Unit No. 

505-65-0 1 
11. Contract or Grant No. 

NCA2- 1 28 
13. Type of Report and Period Covered 

Contractor Report 
14. Sponsoring Agency Code 

.- -- 

Point of Contact: K. G. Stevens, Jr., Ames Research Center, MS 258-5, Moffett Field, CA 94035 
(41 5) 694-5949 or FTS 464-5949 

16. Abstract 

From runs of standard benchmarks or benchmark suites, it is not possible to characterize the 
machine nor to predict the running time of other benchmarks which have not been run. In this paper, we 
report on a new approach to benchmarking and machine characterization. We describe the creation and 
use of a machine analyzer, which measures the performance of a given machine on Fortran source lan- 
guage constructs. The machine analyzer yields a set of parameters which characterize the machine and 
spotlight its strong and weak points. We also describe a program analyzer, which analyzes Fortran pro- 
grams and determines the frequency of execution of each of the same set of source language operations. 
We then show that by combining a machine characterization and a program characterization, we are able 
to predict with good accuracy the running time of a given benchmark on a given machine. 
Characterizations are provided for the Cray X-MP/48, Cyber 205, IBM 3090/200, Amdahl 5840, 
Convex C-1, VAX 8600, VAX 11l785, VAX 11D80, SUN 3/50 and IBM RT-PC/125, and for the 
following benchmark programs or suites: Los Alamos (BMK8A1), Baskett, Linpack, Livermore Loops, 
Mandelbrot Set, NAS Kernels, Shell Sort, Smith, Whetstone and Sieve of Erathostenes. 


